首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
针对提高永磁电机温升计算准确性的问题,提出一种计及永磁体涡流损耗分布特性的实时热计算方法。依据温度对电机内各材料属性有所影响,且永磁体涡流损耗有其特有的分布特性的事实,提出并采用计及永磁体涡流损耗分布特性的实时热计算方法,以一台10 k W变频驱动永磁同步电动机为例进行实例计算,与普通未计及永磁体涡流损耗分布特性、没有使用实时热计算方法的温升计算方法对比,经在线温升测量,验证了计及永磁体涡流损耗分布特性的实时热计算方法能有效提高温升计算的准确性,可使计算结果与实验结果之间的误差缩小到0.5%之内。  相似文献   

2.
永磁体涡流损耗是高功率密度永磁同步电机热退磁的主要原因之一,对永磁同步电机安全、可靠运行非常重要。本文结合理论分析,使用三维有限元法对永磁体涡流损耗的产生因素及分布特性进行分析。运用涡流密度线的概念及模型,使得永磁体涡流损耗的分布更易于理解。通过将得到的永磁体涡流损耗分块平均分布数据和永磁体涡流损耗整块平均分布数据分别代入三维温度场中进行计算,并与温升实验数据进行对比分析,证明了本文得到的永磁体涡流损耗分布对准确计算永磁体局部温升最热点非常重要。为了适用于工程计算,研究了永磁体涡流损耗各个方向的分布特点对温升分布的影响,并总结出快速、简单且较为准确的永磁体局部最热点计算方法。  相似文献   

3.
针对永磁体局部温升过高易导致永磁体局部过热退磁的问题,提出一种抑制永磁体局部温升最高点的永磁体不均匀轴向分段技术。在考虑了永磁体涡流损耗分布特性的基础上,使用迭代热计算方法,研究了未分段情况下的永磁体温升分布情况,并通过在线温升测量验证了其计算的准确性。根据永磁体涡流损耗密度计算公式和温升计算结果,给出了永磁体不均匀轴向分段技术流程图,并使用该技术来抑制永磁体局部温升最高点,使永磁体的最高温度降低了12.63℃,温差降低了2.26 K,温升分布更加均匀、合理。  相似文献   

4.
二维有限元方法具有计算速度快,精度高,结果收敛快并且波动小的优点。永磁同步电机,特别是高速和大功率电机的永磁体涡流损耗不可忽略,而永磁体允许温升有限,高温容易引起退磁。在电机设计时考虑永磁体的温升十分重要。本文采用二维有限元方法来估算三维条件下的永磁体涡流损耗,并提出一种估算的方法。以普瑞斯04电动汽车电机为例,仿真结果表明此方法实用有效。  相似文献   

5.
高频轴向磁通永磁电机永磁体涡流损耗三维解析模型   总被引:1,自引:0,他引:1  
针对现有二维解析模型在计算轴向磁通永磁电机永磁体涡流损耗存在精度不足的问题,该文提出一种能够精确计算该类电机永磁体涡流损耗的新型三维解析模型。该模型利用精确子域法和电阻网络模型,能够同时考虑定子开槽、定子谐波电流、涡流反作用和涡流三维分布的影响。利用有限元法验证了精确子域模型计算得到的空载和电枢磁场分布,并在理想空载下,验证了解析模型永磁体表面涡流密度和永磁体涡流损耗值,分析电机在高频运行下涡流反作用对永磁体涡流损耗的影响。最后,对1台7kW、4000rpm的轴向磁通永磁电机进行空载脉宽调制(pulsewidthmodulated,PWM)电压供电实验和空载正弦波电压供电实验,得到因PWM谐波电流引起的永磁体涡流损耗,将实验结果,有限元结果与解析结果作对比,验证了该解析模型的正确性。  相似文献   

6.
针对当前电机产业的发展趋势,永磁同步电机得到广泛应用,并且电机单机容量逐渐增大,致使电机内部温升不断增大,过高的温升严重影响了电机的可靠运行。利用Ansys有限元软件的热分析功能对永磁同步电机进行仿真,分析了永磁体涡流损耗对温度场的影响,证明了永磁体涡流损耗的重要性。  相似文献   

7.
应用于飞轮储能的高速永磁同步电机涡流损耗的研究对于电机可靠性具有重要意义。通过有限元仿真分别计算永磁体和护套中的涡流损耗,并重点研究高速电机护套材料电导率的不同对于高速电机转子涡流损耗的影响,以及永磁体与护套电导率的比值对转子总损耗的影响。结果表明:在选择护套时并不是导电率越小越好,只有当小于某个特定电导率时,总损耗才能降低;并且护套材料的电导率越大,其对永磁体中的涡流损耗的屏蔽效果越明显,护套材料电导率的大小,对损耗在护套和永磁体中的分布起了一定的分配作用。  相似文献   

8.
针对温升计算过程中材料的温度特性对损耗产生影响的问题,在考虑损耗分布特征的基础上,采用电磁场-温度场的双向耦合计算方法,实现两场信息的反馈并进行迭代热计算。以一台7. 5 kW电动车用永磁同步电动机为例,建立电磁场和温度场三维耦合模型,运用磁热双向耦合方法计算了电机在额定转速下的温升分布状态。以温升实验测量值为基准,与传统温度场计算采用均匀生热率的计算结果进行对比,验证了双向耦合计算方法的准确性。基于磁热双向耦合的计算方法对车用永磁同步电机温升进行优化设计,针对永磁体温升过高问题,采用永磁体沿轴向分段技术,有效的降低了永磁体上的温升;对永磁体放置方式进行优化,采用V一型转子结构替代V型转子结构,计算得到前者杂散损耗比后者降低57%,通过磁热耦合方法计算得到优化后永磁体和绕组温升分别降低14 K和23. 3 K。  相似文献   

9.
提出一种基于相似原理的脉宽调制(PWM)电压激励下电机永磁体涡流损耗频域压缩计算方法,将PWM高频谐波涡流问题变换为降频涡流问题,从而减少时步有限元分析的计算步数并缩短计算时间。在以往相似方法基础上,进一步考虑了铁心磁饱和,并保持了基波电压、频率以及电机转速不变。以相似问题和原问题中磁场高频成分具有相同透入深度为条件,通过理论解析法分析两者在电机电流、电机电磁场和永磁体涡流损耗上的相似关系。以一台定子齿部存在磁饱和的表贴式永磁电机为例,将相似方法与传统时步有限元法进行比较验证,结果表明定子电流高频谐波相差不大于6.6%,在相似比为4时,永磁体涡流损耗相差-4.75%,计算用时仅为传统有限元法的1/5。通过测量线圈中放置金属块后线圈的阻抗变化以及测量电机永磁体的温升,分别对相似方法及其涡流损耗计算结果进行了物理验证。  相似文献   

10.
针对3D有限元软件计算永磁电机永磁体涡流损耗耗时长,永磁体涡流损耗精确解析模型复杂,参数变量间对应关系不明晰等问题,采用槽口位置的局部解析建模方法,重新建立坐标系,研究与槽口位置对应的永磁体内磁密变化规律,并对磁密波形进行简化分析,提出一种气隙磁导谐波引起的永磁体涡流损耗的简化解析计算模型,该方法可直观反映出永磁体涡流损耗的主要影响因素,且计算耗时短。利用3D有限元和实验结果对该简化解析模型计算结果进行验证。基于该简化解析模型分析得出影响槽口位置永磁体磁密变化的主要因素为槽口宽度与等效气隙长度之比和槽口宽度与定子齿距之比,进而研究了主要影响因素对气隙磁导谐波引起的永磁体涡流损耗的影响规律,并提出相应的参数优化方法。结果显示,优化后样机永磁体涡流损耗降低了90. 2%,损耗抑制效果十分明显。  相似文献   

11.
永磁同步电机永磁体受限于热约束,无法在温度较高的环境下运行,故需减少永磁体上的电涡流损耗,从而降低永磁体上的温度。针对使用有限元法对永磁体电涡流损耗估算时间较长,以及使用解析法估算时难以达到与有限元法相同的精度,采用混合有限元解析法估算永磁体上的电涡流损耗。结合电涡流的反作用,在模拟电机旋转时,无需重复划分三角形区域;使用MATLAB软件仿真模拟,将混合有限元解析法与Galerkin有限元法对比,减少三角形区域划分的个数。由此验证了永磁体上电涡流损耗符合端部效应以及集肤效应的特征,在保证精度的同时,减少了仿真的时间。  相似文献   

12.
稀土永磁电机由于其效率高、转矩密度高、功率密度大、控制性能好等特点被广泛应用于风力发电领域,但是永磁体内的磁场波动与电机内的电流和温度相互影响,有发生不可逆失磁的风险,会影响发电机运行的稳定性。以1.5 MW直驱永磁风力发电机为研究对象,从永磁材料的退磁机理、故障电流对永磁体的影响、涡流损耗、永磁体温升的计算和试验等方面进行分析,为大功率直驱永磁风力发电机的设计提供了参考。  相似文献   

13.
NdFeB sintered magnets are widely used in rotating machines. As the conductivity of NdFeB sintered magnets is fairly high compared with that of ferrite magnets, the eddy current loss due to slot ripple, etc., cannot be neglected. If the eddy current loss of permanent magnets becomes large, the temperature of the permanent magnet becomes high and the thermal demagnetization becomes serious. Therefore, it is required to evaluate AC loss of the permanent magnet. But the measurement of AC loss of the permanent magnet under serious operating conditions has not yet been reported. In this paper, the AC loss of NdFeB sintered magnet was measured using a newly developed closed‐type measuring equipment. It is shown that the coaxial double coil is useful for accurate measurement of the magnetic field. The eddy current loss and hysteresis loss of the permanent magnet are obtained by the loss separation. It is illustrated that the hysteresis loss is larger than the eddy current loss in the range of less than several hundred hertz. The appropriateness of measurement is verified by the numerical analysis. © 2006 Wiley Periodicals, Inc. Electr Eng Jpn, 154(4): 8–15, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20213  相似文献   

14.
盘式永磁同步电机永磁体内涡流的有限元分析   总被引:2,自引:1,他引:2  
钕铁硼是采用最多的永磁体材料,虽然性能令人满意,但电导率高,耐热性差;并且由于转子散热能力差,涡流会使永磁体发热升温,从而导致部分不可逆的退磁,因此很有必要对永磁体内的涡流进行分析。针对盘式永磁同步电机自身的特点,通过二维电磁场有限元法分别求解了空载和负载时电机内的磁场和永磁体内的涡流,其中包括有铁心电机由于齿槽的存在而引起的涡流和不同电机运行速度下的涡流。为了考虑电机的运动效应和使计算结果更加精确,采用了瞬态分析,同时在划分单元时考虑了磁场的透入深度。最后根据瞬态计算出的数据绘出了磁矢位和涡流波形。波形分析得出了影响永磁体内涡流的因素以及应采取的措施。  相似文献   

15.
陈斯翔  严欣平  黄嵩  陈吉 《微电机》2011,44(11):5-9
采用气隙磁位分布函数作为边界条件取代定子磁场,建立计及磁路饱和及齿槽效应影响的永磁同步电机磁体涡流损耗计算的二维有限元模型。对内置式钕铁硼永磁同步电机各次谐波磁场引起的永磁体涡流损耗进行分析计算。结果显示:磁路饱和对涡流损耗的影响很大,各次谐波中具有一阶齿谐波特征次数的谐波磁场是引起永磁体涡流损耗的主要因素。  相似文献   

16.
以高精度无槽盘式永磁电机为研究对象,建立了电机三维电磁仿真模型。详细分析了该电机反电动势和转矩特性,避免由高次谐波引起的定、转子及永磁体涡流损耗,有效改善了电机的热性能,为进一步研究打下基础。建立了三维温度场仿真模型,分析了热源分布和传热过程,计算了电机在自然散热条件下温度的稳态分布。最后通过电机温升试验,验证了理论分析的正确性与合理性。  相似文献   

17.
在永磁电机设计中,永磁体(PM)作为励磁磁源,直接影响电机性能。由于定子电流时间谐波和气隙磁场中高次空间谐波的存在,永磁体内产生的涡流损耗不容忽视,极易导致永磁体过热或不可恢复性退磁。本文提出一种减小定子无磁轭模块化轴向永磁电机永磁体涡流损耗的方法,以一台10极、12槽、20k W的轴向永磁电机为例,通过对永磁体表面开槽深度、开槽方式及开槽数目的研究,利用解析法和三维有限元仿真分析不同开槽结构的永磁体涡流损耗,推导出永磁体涡流损耗等解析式。并对比带额定负载时气隙磁通密度,合理选择永磁体表面开槽方式及开槽数目。  相似文献   

18.
高速永磁同步电机采用变频器供电含有大量谐波、频率高等特点导致转子涡流损耗升高,从而使电机温度上升,给散热带来困难,影响电机效率、永磁体性能等指标。针对表贴式高速永磁电机,推导转子涡流损耗的解析计算,该方法在极坐标系下建立物理模型,考虑气隙长度、护套、永磁体等子域,并为了提高模型的计算精度,考虑了涡流反应影响和定子的开槽效应。以一台15kW表贴式高速永磁电机为例,采用正弦波供电和PWM供电两种供电方式,分析气隙长度、槽开口宽度以及护套材料对转子涡流损耗的影响。将解析法的计算结果和有限元法结果进行比较,验证解析方法的准确性。  相似文献   

19.
减少轴向磁场电机永磁体空载涡流损耗的方法主要有:减小定子槽开口宽度、增大气隙长度、永磁体分块、使用屏蔽层和磁性槽楔等。基于轴向磁场电机的简化二维分析模型,分析了减小定子槽开口宽度和增大气隙长度、使用屏蔽层和磁性槽楔降低空载涡流损耗的效果。通过三维电磁场仿真,研究了永磁体不同分块方式对减少空载涡流损耗的效果。研究结果表明,减小定子槽开口宽度的效果最佳;虽然增加气隙长度可以显著减小涡流损耗,但永磁体用量迅速增加;永磁体分块减小涡流效果较好,且周向分块方式最好;屏蔽层起反作用;使用分段磁性槽楔效果比减小定子槽开口宽度稍微差一点,但加工难度要低些。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号