首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although large amounts of olive oil are produced in Turkey, not much information on its chemical composition is available in the literature to date. The aim of this study was to evaluate the chemical composition of commercial olive oils produced from the Ayvalik olive cultivar in Canakkale, Turkey. Five different samples corresponding to the olive oil categories of extra virgin (conventional, extra virgin olive oil (EVOO), and organic extra virgin olive oil (OGOO) production), virgin olive oil (OO-1), ordinary virgin olive oil (OO-2) and refined olive oil (RFOO) were evaluated. Olive oils were collected from two consecutive production years. According to the free fatty acids, the absorbance values (K232 and K270), and peroxide values of all the samples conformed to the European standards for olive oil. The level of oleic acid was in the range of 68–73%; while the linoleic acid content was significantly lower in the refined olive oils. The tocopherol and polyphenol content was in the lower range of some European olive oils. However, pinoresinol was a major phenolic compound (5–77 mg/kg depending on the oil category). Its content was markedly higher than in many other oils, which would be a useful finding for olive oil authentication purposes.  相似文献   

2.
Piedmont olive oils collected in 2010 were characterized, for the first time, in terms of their fatty acid profile using GC and 1H NMR and compared to other oils from five Italian regions. Applying NMR spectroscopy on the olive oil samples, without manipulation, it is possible to calculate the proportion of the different acyl groups in the oil samples. As the area of the signals is proportional to the number of each type of proton in the sample, saturated, monounsaturated (oleic acid) and polyunsaturated (linoleic and linolenic acids) fatty acids were determined. All analyzed samples can be categorized as virgin olive oil extra quality according to the oleic/linoleic ratio. Based on a preliminary geographical investigation, olive oils produced in the North of Italy show a good separation from those from Central and Southern regions. Practical applications : Oil characterization of new products is the basis for further nutritional and food technological investigations and the quality of edible oils is of great concern especially for products available on the market. The two adopted techniques show a remarkable agreement in the evaluation of fatty acid composition of oil samples. Also, this research, by means of 1H NMR, provides information on geographical origin of the olive oils of Northern Italian regions with respect to Central and Southern regions.  相似文献   

3.
13C Nuclear magnetic resonance (NMR) spectra of 104 oil samples were obtained and analyzed in order to study the use of this technique for routine screening of virgin olive oils. The oils studied included the following: virgin olive oils from different cultivars and regions of Europe and north Africa, and refined olive, “lampante” olive, refined olive pomace, high-oleic sunflower, hazelnut, sunflower, corn, soybean, rapeseed, grapeseed, and peanut oils, as well as mixtures of virgin olive oils from different geographical origins and mixtures of 5–50% hazelnut oil in virgin olive oil. The analysis of the spectra allowed us to distinguish among virgin olive oils, oils with a high content of oleic acid, and oils with a high content of linoleic acid, by using stepwise discriminant analysis. This parametric method gave 97.1% correct validated classifications for the oils. In addition, it classified correctly all the hazelnut oil samples and the mixtures of hazelnut oil in virgin olive oil assayed. All of these results suggested that 13C NMR may be used satisfactorily for discriminating some specific groups of oils, but to obtain 100% correct classifications for the different oils and mixtures, more information than that obtained from the direct spectra of the oils is needed.  相似文献   

4.
5.
Fatty acid composition was determined for 105 virgin olive oil samples of the two dominant Cretan olive cultivars, Koroneiki and Mastoides, harvested from different producing areas at different maturity stages. The oils of the Koroneiki cultivar were characterized by lower concentrations of oleic and decaheptanoic and higher concentrations of linoleic and palmitic acids. Oils obtained from high-altitude locations were rich in monounsaturated fatty acids, while oils obtained from low-altitude locations had higher content of saturated fatty acids. Palmitic and palmitoleic acids increased with increasing altitude in both cultivars examined. The statistical analysis of the compositional data showed significant potential for the classification of the samples according to cultivar and location of origin.  相似文献   

6.
This paper presents the first investigation on the effect of enrichment refined olive oil by chlorophyll pigment extracted from Chemlali olive leaves during storage (6 months). The changes that occurred in the quality indices, fatty acids, sterol, and phenolic content were investigated during the storage of refined olive oil under RT (20°C) and accelerated conditions (50°C) in the dark. Additionally, the pigments (chlorophyll and carotene) changes during 6 months of oil storage were evaluated. At the end of the storage, more than 90% of chlorophyll pigments decomposed in all samples, while, carotene pigment loss was lower showing up to 60 and 85% loss for oil stored at 20 and 50°C, respectively, at the end of storage. The reduction of total phenolic compounds exhibited similar degradation profiles, being reduced by 5% and up to 60% for the enriched refined olive oil stored at 20 and 50°C in 6 months, respectively. In the fatty acid composition, an increase in oleic acid and a decrease in linoleic and linolenic acids were less significant in enriched than non‐enriched refined olive oil. On the other hand, sterol composition was less affected by storage in enriched oil samples. However, the sterol concentration of the oil samples showed an increase in β‐sitosterol, 24‐methylene cholesterol, stigmasterol, and a decrease in cholesterol, Δ5, 24‐stigmastadienol percentage at the end of storage. Based on the Rancimat method, the oils with added leaf pigment extract had the lowest peroxide value and the highest stability. After 6 months of storage, the oxidative resistance of refined olive oil fell to 0.2 and to zero for enriched refined olive oil stored at 20 and 50°C, respectively.  相似文献   

7.
For evaluation of the authenticity of Iranian olive oil, samples from many Iranian olive oil producers especially north of Iran in the production year 2007 were collected. The fatty acid and triacylglycerol compositions were measured. The most recent calculation methods including ∆ECN the difference between the actual and theoretical ECN42 (equivalent carbon number), triglyceride content and R of olive oils according to IOOC methods were applied. On the basis of our results, we were able to classify the olive oils into the extra virgin, virgin olive and olive oil categories. The important fatty acids are oleic, palmitic and linoleic acids and their main triacylglycerols are OOO, POO, OOL, PLO, SOS plus POP, and OLL, respectively. On the basis of the triacylglycerol results, experimental ECN48, ECN46, ECN50, ECN44 and ECN42 were obtained. By using the fatty acids results and a computer program, the theoretical ECN42 and ECN44 were calculated. Then R values, being the ratio of r ECN42/r ECN44 for authenticity of all olive oils and ∆ECN for determining categories of olive oils, were defined. The results of olive oil samples were in the accepted limits of Codex and IOOC. Finally we suggest that the R and ∆ECN can be used in identification of adulteration of olive oils and also they are useful from the point of view of authenticity and classification.  相似文献   

8.
The composition of olive oils may vary depending on environmental and technological factors. Fatty acid profiles and Fourier‐transform infrared (FT‐IR) spectroscopy data in combination with chemometric methods were used to classify extra‐virgin olive oils according to geographical origin and harvest year. Oils were obtained from 30 different areas of northern and southern parts of the Aegean Region of Turkey for two consecutive harvest years. Fatty acid composition data analyzed with principal component analysis was more successful in distinguishing northern olive oil samples from southern samples compared to spectral data. Both methods have the ability to differentiate olive oil samples with respect to harvest year. Partial least squares (PLS) analysis was also applied to detect a correlation between fatty acid profile and spectral data. Correlation coefficients (R2) of a calibration set for stearic, oleic, linoleic, arachidic and linolenic acids were determined as 0.83, 0.97, 0.97, 0.83 and 0.69, respectively. Fatty acid profiles were very effective in classification of oils with respect to geographic origin and harvest year. On the other hand, FT‐IR spectra in combination with PLS could be a useful and rapid tool for the determination of some of the fatty acids of olive oils.  相似文献   

9.
We aimed at investigating oxidative stability and changes in fatty acid and tocopherol composition of extra virgin olive oil (EVOO) in comparison with refined seed oils during short‐term deep‐frying of French fries, and changes in the composition of the French fries deep‐fried in EVOO. EVOO samples from Spain, Brazil, and Portugal, and refined seed oils of soybean and sunflower were studied. Oil samples were used for deep‐frying of French fries at 180 °C, for up to 75 min of successive frying. Tocopherol and fatty acid composition were determined in fresh and spent vegetable oils. Tocopherol, fatty acid, and volatile composition (by SPME–GC–MS) were also determined in French fries deep‐fried in EVOO. Oil oxidation was monitored by peroxide, acid, and p‐anisidine values, and by Rancimat after deep‐frying. Differential scanning calorimetry (DSC) analysis was used as a proxy of the quality of the spent oils. EVOOs presented the lowest degree of oleic and linoleic acids losses, low formation of free fatty acids and carbonyl compounds, and were highly stable after deep‐frying. In addition, oleic acid, tocopherols, and flavor compounds were transferred from EVOO into the French fries. In conclusion, EVOOs were more stable than refined seed oils during short‐term deep‐frying of French fries and also contributed to enhance the nutritional value, and possibly improve the flavor, of the fries prepared in EVOO.  相似文献   

10.
It was previously demonstrated that Fourier transform near infrared (FT‐NIR) spectroscopy and partial least squares (PLS1) were successfully used to assess whether an olive oil was extra virgin, and if adulterated, with which type of vegetable oil and by how much using previously developed PLS1 calibration models. This last prediction required an initial set of four PLS1 calibration models that were based on gravimetrically prepared mixtures of a specific variety of extra virgin olive oil (EVOO) spiked with adulterants. The current study was undertaken after obtaining a range of EVOO varieties grown in different countries. It was found that all the different types of EVOO varieties investigated belonged to four distinct groups, and each required the development of additional sets of specific PLS1 calibration models to ensure that they can be used to predict low concentrations of vegetable oils high in linoleic, oleic, or palmitic acid, and/or refined olive oil. These four distinct sets of PLS1 calibration models were required to cover the range of EVOO varieties with a linoleic acid content from 1.3 to 15.5 % of total fatty acids. An FT‐NIR library was established with 66 EVOO products obtained from California and Europe. The quality and/or purity of EVOO were assessed by determining the FT‐NIR Index, a measure of the volatile content of EVOO. The use of these PLS1 calibration models made it possible to predict the authenticity of EVOO and the identity and quantity of potential adulterant oils in minutes.  相似文献   

11.
The effect of location of fruit in canopies of hedgerow olive trees (Olea europaea L., cv. ‘Arbequina’) on quality of virgin oil was tested by analyzing oils extracted from different height layers and faces of nine olive hedgerows (6 North–South oriented and 3 East–West). Although sensory attributes were not different, other oil quality parameters may be significantly modified by fruit position. Oils extracted from fruits harvested from higher layers exhibited significantly higher stability against oxidation, along with higher palmitic acid, linoleic acid and phenol contents, but lower oleic acid content. Oils extracted from fruits harvested from East and North facing hedgerows oriented North–South and East–West, respectively, exhibited higher oleic contents and lower saturated and polyunsaturated fatty acid contents. The mean phenol content of oils extracted from fruits from a North–South oriented hedgerow was significantly greater from one of the East–West oriented hedgerows. These findings may be relevant for the design of future olive hedgerows destined for olive oil production.  相似文献   

12.
The present study focuses on the olefinic region of the 13C nuclear magnetic resonance (13C NMR) spectrum of virgin olive oil which shows 12 peaks resonating between 127.5 and 130 ppm. These peaks are assigned to the most abundant unsaturated fatty acid moieties of the olive oil, oleic and linoleic acids, which are present in α and β positions of the glycerol backbone. With the use of an internal reference pyrazine, the 12 peaks were integrated and their areas were expressed in mmol/g of virgin olive oil. The intensities of the 12 observed peaks were affected when an authentic virgin olive oil was mixed with a seed oil. This observation was used to develop a semiquantitative method to detect adulteration of virgin olive oil by other oils based on 13C NMR spectroscopy.  相似文献   

13.
In this paper we evaluate the stability, purity and regulated quality composition of fatty acids and sterols (both physico‐chemical and sensory) of commercial Argentinean virgin olive oils in order to evaluate their acceptance on the world market. For this purpose, samples of the best known and most widely distributed oils in supermarkets located in Buenos Aires (Argentina) were acquired. After thoroughly analysing these samples, only 20% were considered to have an acceptable quality. However, some were excluded because of their high campesterol content, which could be an intrinsic characteristic of these oils. The most useful analytical parameter used to confirm authenticity was ECN‐42 R – ECN‐42 T, followed by wax content and 3.5 stigmastadienes. Only 24% of the extra‐virgin olive oil samples were classified as ‘extra‐virgin’ from the regulated quality viewpoint. The low oleic and high linolenic acid contents of the Argentinean virgin olive oils stand out when compared with European virgin olive oils. The oxidative stability values may be considered very low, indeed even lower than those obtained in Spanish virgin olive oils.  相似文献   

14.
Refined olive oil and olive‐pomace oil were enriched with olive leaf phenolic compounds in order to enhance its quality and bring it closer to virgin olive oil. The changes that occurred in the concentrations of pure oleuropein, oleuropein aglycone, hydroxytyrosol acetyl and α‐tocopherol at 400 µg/kg of oil during the storage of refined olive oil and olive‐pomace oil under accelerated conditions (50 °C) were investigated. In a period of 4 months, α‐tocopherol decomposed by 75% whereas less than 40% of the phenols were lost. During storage, enzymatic olive leaf extract hydrolysate that contains two major compounds, hydroxytyrosol and oleuropein aglycone showed the highest antioxidant activity and the lowest detected stability, followed by oleuropein. The oleuropein in olive leaf extracts exhibited similar degradation profiles, reducing by 60–50% and 80% for the olive oil and olive‐pomace oil in 6 months, respectively. The acetylated extract, however, displayed a loss of 10 and 5% in olive oil and olive‐pomace oil, respectively. In the fatty acid composition, an increase in oleic acid and a decrease in linoleic acid were observed. The antiradical activities of the olive oil and olive‐pomace oil enriched with olive leaf phenolic compounds at 400 ppm showed that enzymatic hydrolysate extract had the highest protective effect against oil oxidation. Based on the Rancimat method, the oils with added leaf enzymatic hydrolysate extract had the lowest peroxide value and the highest stability. After 6 months of storage and at 120 °C, the oxidative resistance of refined olive oil and olive‐pomace oil reached 0.71 and 0.89 h, respectively, whereas that of the non‐enriched samples fell to zero.  相似文献   

15.
The chemical composition of commercial Cornicabra virgin olive oils (n=65) was studied, as was its relationship with oil quality and the influence of the extraction method and production year. The main characteristics of these olive oils were: oxidative stability 53 ± 24 h, mean polyphenol content 162 ± 57 mg/kg (as gallic acid), oleic acid 80.8 ± 0.9%, linoleic acid 4.6 ± 0.6%, and campesterol 4.3 ± 0.1%, which is peculiar to this variety. No clear differences in composition were observed with respect to the different extraction systems (dual-phase/triple-phase decanters and pressure), although oils produced by the dual-phase decanter showed higher oxidative stability and polyphenol content. There were significant differences in major fatty acids and sterols according to the production year.  相似文献   

16.
17.
Mono-varietal extra virgin olive oils were micro-extracted from drupes that were selectively collected from 28 trees distributed in five different Southern Italian Apulian areas. Nuclear Magnetic Resonance (NMR) profiles of these oil samples were correlated to the genetic (young green material) and soil (samples collected within the foliage projection) data of the tree of origin. Genetic analysis, performed on the samples using SSRs (Simple Sequence Repeats) by 9 microsatellite loci, confirmed the specific cultivar assignment (among Cima di Mola, Coratina, Ogliarola, and Oliva Rossa cultivars). Chemometric methods applied to 1H-NMR spectroscopic data were used for cultivar and geographical origin discrimination of the studied extra virgin olive oils. Linear Discriminant Analysis (LDA) afforded a high reliability degree for discriminating cultivars (almost 90% of prediction ability), and a good assigning ability for the geographical origin (Ogliarola and Coratina samples used as subsets). Soil analyses were performed for each tree. Regression analysis was applied to soil composition in order to correlate available nutrients and total metals with the content of fatty acids and minor components present in monovarietal extra virgin olive oils. In the case of oleic and linoleic fatty acids, and for some terpenes, B, Cr, Mn, Zn were found to give significant correlations. Zn and Mn were the most significant trace elements for all the correlations found (p < 0.01). The results obtained (genetic, spectroscopic and soil analyses) are discussed as a multidisciplinary approach for setting up a strategy for a cultivar and/or geographic origin certification committed database construction.  相似文献   

18.
This paper describes an investigation into the usefulness of some instrumental methods (GC, NMR, and DSC) in the detection of adulteration of olive oil with soybean, sunflower, and canola oils (that are relatively cheap oils mixed as adulterants with olive oil). These seed oils were compared with genuine and commercial olive oils, two of which appeared to have been adulterated. It was observed that from among physical and chemical indices, the iodine value and the refractive index in the two olive oil samples (named A and B) were significantly higher (P < 0.01) than in the reference (genuine) olive oil, both values being above standard limits established for olive oil. On the other hand, fatty acid (FA) profiles in these two samples exhibited higher amounts of linolenic and linoleic acids (5.34 and 39.92%, 6.38 and 54.42%, 0.79 and 12.88% for A, B and genuine olive oils respectively) but significantly lower amounts of oleic acid (30.07, 21.72 and 67.86%, respectively). The number and intensity of signals observed using 1H NMR indicated that the peaks numbered 2 and 7 were useful in the determination of olive oil purity. Because of higher linolenic and linoleic acid contents in samples A and B, the intensity and integrated areas for these two signals were higher than those for other olive oil samples in which signal 2 was not observed and signal 7 had a very low intensity. Satisfactory results were achieved from quantitation of DSC parameters. The results show that due to increased unsaturated FAs in samples A and B and the consequent changes in triacylglycerol profiles, offset crystallization temperature and onset melting temperature in these two olive oils differed from those of the reference and clearly shifted to lower values. Crystallization and melting curves were similar to the corresponding curves observed for soybean and sunflower oils in terms of shape and number of peaks.  相似文献   

19.
The fatty acid composition of 27 samples of commercial hydrogenated vegetable oils and 23 samples of refined oils such as sunflower oil, rice bran oil, soybean oil and RBD palmolein marketed in India were analyzed. Total cis, trans unsaturated fatty acids (TFA) and saturated fatty acids (SFA) were determined. Out of the 27 hydrogenated fats, 11 % had TFA about 1 % where as 11 % had more than 5 % TFA with an average value of about 13.1 %. The 18:1 trans isomers, elaidic acid was the major trans contributor found to have an average value of about 10.8 % among the fats. The unsaturated fatty acids like cis-oleic acid, linoleic acid and α-linolenic acid were in the range of 21.8–40.2, 1.9–12.2, 0.0–0.7 % respectively. Out of the samples, eight fats had fatty acid profiles of low TFA (less than 10 %) and high polyunsaturated fatty acids (PUFA) such as linoleic and α-linolenic acid. They had a maximum TFA content of 7.3 % and PUFA of 11.7 %. Among the samples of refined oils, rice bran oil (5.8 %) and sunflower oil (4.4 %) had the maximum TFA content. RBD palmolein and rice bran oils had maximum saturated fatty acids content of 45.1 and 24.4 % respectively. RBD palmolein had a high monounsaturated fatty acids (MUFA) content of about 43.4 %, sunflower oil had a high linoleic acid content of about 56.1 % and soybean oil had a high α-linolenic acid content of about 5.3 %.  相似文献   

20.
Oxidation is the primary cause of virgin olive oil quality deterioration. This paper presents a correlation between oxidative stability, as determined by the Rancimat method, and some chemical components involved in the oxidation process of a set of 74 Cornicabra virgin olive oils obtained from three successive crop seasons (94/95 to 96/97). Results showed a clear influence of total polyphenols on virgin olive oil stability, with linear regression coefficients which were similar for the three seasons studied, and a much lower contribution of α-tocopherol and unsaturated fatty acids, mainly linoleic acid. A significant effect dependent on the crop season was also observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号