首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
基于多孔介质燃烧的端部辐射器的实验研究   总被引:1,自引:0,他引:1  
设计了基于多孔介质燃烧技术的端部辐射器,研究不同预混气体流速(功率)下当量比对燃烧器燃烧稳定性、多孔介质内部温度、辐射器表面温度及其均匀性、污染物排放、辐射效率等特性的影响.结果表明,燃烧器辐射表面的温度均匀性较好.最大相对温差小于3%:多孔介质燃烧器可实现最低当量比0.33的稳定可持续燃烧;小功率燃烧时.多孔介质内部温度及端部辐射表面温度都随当量比增大而增加,且流量越大增加程度越大,可据此提出实现更高辐射表面温度的方案.实验工况范围内.最大辐射效率达23%;NO<,x>排放体积分数低于25×10<'6>,在当量比大于0.45时,CO排放体积分数均低于10×10<'6>.  相似文献   

2.
利用自行设计的多孔介质实验台,对C_2H_4-AIR-N_2预混气体在多孔介质燃烧器内的燃烧特性进行了实验研究,分析燃料当量比、预混气体流速以及N_2稀释比对预混气体的可燃极限、火焰传播方向、火焰温度分布以及污染物排放的影响。研究表明:随着稀释比的上升,预混气体的可燃极限范围缩小,火焰向上游传播的工况逐渐减少;燃烧器内最高火焰温度与当量比以及气体流速正相关,与稀释比负相关;CO的排放量随着稀释比的上升而增加,与当量比以及气体流速负相关;实验中的NO排放量小于20 mg/m~3。  相似文献   

3.
在多入口燃烧器内加入多孔介质,以甲烷/空气为燃料,采用非预混燃烧的数值模拟方法,探究多入口燃烧器的燃烧情况.对比多孔介质燃烧与空间自由燃烧,分析了"超焓燃烧"现象;在多孔介质燃烧基础上,探究不同当量比对燃烧温度的影响;在多孔介质燃烧和不同当量比的基础上探究污染物CO和CO_2的排放情况.结果表明:多孔介质燃烧可以实现"超焓燃烧"特性,燃烧火焰温度高于自由空间燃烧温度;当量比对燃烧温度影响很大,随着当量比的增大,燃烧器内最高燃烧温度升高,但燃烧过程存在一个最佳当量比0.6,超过该当量比后最高温度将不再变化;多入口多孔介质燃烧有助于减少CO和CO_2的生成量.  相似文献   

4.
天然气在渐变型多孔介质中的预混燃烧启动特性   总被引:1,自引:0,他引:1  
针对天然气在渐变型多孔介质燃烧器中的点火启动过程进行了试验研究,通过监测燃烧器壁面或气体温度在点火后的变化,得到了影响启动时间的因素及特性,对特定的燃烧器而言,启动时间与预混气体当量比、流速以及点火位置有关,在冷态下点火,随着当量比接近理论当量比,启动时间减小;混合气体流速增大,启动时间增大;点火位置从燃烧器外移到燃烧器人口时,启动时间可大大缩小,采用小流速、近理论当量比条件下点火,对多孔介质层预热,有利于火焰迅速向上游移动,然后再调整到需求当量比或流速,可以大大减小燃烧器启动时间,采用孔径变化率高的渐变型多孔介质结构,也可以达到缩短启动时间的目的。  相似文献   

5.
为研究预混气体在多孔介质燃烧器中的火焰燃烧特性,设计了一种新型多孔介质燃烧器,其中多孔介质区域由氧化铝圆柱体有序堆积而成.分别研究了当量比和入口速度对甲烷/空气预混气体在多孔介质燃烧器中的火焰温度分布、火焰最高温度以及火焰传播速度的影响.结果 表明:在当量比0.162~0.324、入口速度0.287~0.860 m/s...  相似文献   

6.
在热循环型微燃烧器中充入甲烷/空气预混合气体进行燃烧数值模拟,探究该类型燃烧器在加入多孔介质条件下,对燃烧效率和预混气体预热效应的影响。文中采用数值模拟并使用甲烷/空气二阶反应,对比燃烧器在没有加入泡沫陶瓷多孔介质的条件下,在某次反应过程中对微燃烧器的影响,同时还发现多孔介质可以明显地使燃烧器提高燃烧效率,减小热损失,减少污染尾气,而且能更好地回收反应产生的热量并预热未反应气体。  相似文献   

7.
设计了孔径沿程变化的渐变型多孔介质(GVPM)燃烧器,为了解天然气在其中的预混燃烧特性,对燃烧室气体、固体温度分布和CO、NO;污染物排放进行了测量.试验研究了渐变型多孔介质中燃烧的温度场分布、火焰移动、污染物排放、稳定性及多孔介质孔径结构对燃烧特性的影响规律.将研究结果与几种均匀型多孔介质(HPM)中的燃烧进行比较,发现渐变型多孔介质中的燃烧可以有更多的优点,包括均匀温度场分布、极低污染物排放、高火焰速度、高稳定性、宽燃烧极限和有很大的负荷调节范围等.  相似文献   

8.
多孔介质中预混火焰猝熄及自稳定性研究   总被引:3,自引:0,他引:3  
分析了多孔介质中预混火焰的猝熄效应,试验测定了一系列工况下泡沫陶瓷的猝熄直径和自稳定范围,为多孔介质燃烧器的开发设计提供了依据。通过分析发现,猝熄直径受到多个参数的影响,包括:混合气体的流速u、预混气体的层流火焰传播速度SL、燃烧室空管Re、预混气体的导温系数a、当量比φ以及多孔介质固体温度Ts。通过对多孔介质中燃烧的自稳定性试验研究,发现了多孔介质燃烧器中火焰稳定极限(吹脱极限和回火极限)与多孔介质平均孔径和气流速度及燃烧当量比的关系。  相似文献   

9.
渐变型多孔介质中预混燃烧温度分布试验   总被引:3,自引:0,他引:3  
进行了预混天然气在等孔隙率渐近变孔径的多孔介质中的燃烧试验,用热电偶测量了燃烧室温度分布,并与单一孔径(d=1mm)的均匀多孔介质中燃烧结果进行了比较。结果表明,渐变型多孔介质燃烧器比均匀型多孔介质燃烧器具有更多的优点:燃烧室温度分布更加均匀,燃烧更加稳定,并能更好的适应当量比和流量/功率的变化,由于孔径的变化,多孔介质中气流扰动增加,有利于火焰的稳定,当量比和流速变化范围增大。  相似文献   

10.
采用计算流体力学软件Fluent,对H_2/空气预混气在全填充多孔介质平板微燃烧器内的燃烧过程进行数值模拟.研究了多孔介质导热系数、壁面导热系数、当量比、孔隙率对微燃烧器回热循环的影响规律.模拟结果表明:预热区对流回热效率、多孔介质导热效率与多孔介质导热系数呈正相关趋势;壁面导热系数增大会使预热区对流回热效率下降,壁面对流回热效率上升;预热区对流回热效率、壁面对流回热效率与当量比呈负相关趋势;多孔介质孔隙率是影响回热效率的重要因素,随着孔隙率的增大,预热区对流回热效率下降,壁面对流回热效率上升.  相似文献   

11.
Studies related to porous burner for thermoelectric (TE) power generation have mainly focused toward achieving a specific range of power output for various applications. However, detailed analyses on the performance and emission aspects of the porous burner are lacking. In addition, physical integration between the burner and TE modules has added further complexity in this research area. Thus, this work aims to comprehend the effects of fuel–air equivalence ratio on the performance and emission characteristics of a liquid fuel-fired porous burner for micro-cogeneration of TE power. A catalytically inert Al2O3 porous medium was incorporated into a liquid fuel-fired porous burner operating on four mixtures of kerosene-vegetable cooking oil (VCO) blends: 100 kerosene, 90/10 KVCO, 75/25 KVCO, and 50/50 KVCO. Ten bismuth-telluride TE cells were arranged in a ten-sided polygon that, together with finned dissipators, formed a TE module electrically connected in series but thermally connected in parallel. The performance aspects at various fuel–air equivalence ratios were thoroughly evaluated with the corresponding temperature profiles, voltage, current, power output, and electrical efficiency. Results indicated that the surface temperature of the porous media was generally higher than the developed and exit flame temperature of the burner. Varying the fuel-air equivalence ratio significantly affected the electrical efficiency, with a maximum and minimum value of 1.94% and 1.10%, respectively. The power output steadily increased in the lean region, but stabilized as the fuel–air equivalence ratio slowly increased beyond the stoichiometric ratio. The CO emission was relatively lower at the lean region; however, significant amount was recorded in the rich combustion region. Moreover, NOx fluctuated between 1 ppm and 4 ppm over the entire range of fuel–air equivalence ratio.  相似文献   

12.
The superadiabatic combustion in porous media contributes to the efficient conversion of methane to syngas. In this paper, a divergent packed bed burner of two-layer was proposed to obtain the characteristics of methane partial oxidation. The divergent angle, interface location and pellet diameter were used to study the temperature and species distributions. Results indicate that the upper limit of velocity gradually decreased as the equivalence ratio increased and the limit of the divergent burner is obviously higher than that of the cylindrical one. The increasing of the divergent angle within a certain range enhances the methane conversion and the 15° shows the best among the selected five angles. The mole fractions of H2 and CO gradually decrease when the interface locations move from the cylindrical region to the divergent one. As the equivalence ratio increased from 1.3 to 3.5, the yields of H2 and CO and the energy conversion efficiency of syngas increase first and then decrease, and the maximum efficiency of 45.9% appears at the equivalence ratio of 2.0. The divergent region weakens the influence of inlet velocities and contributes to the stability of reforming reactions.  相似文献   

13.
An experimental study on turbulent hydrogen flames from circular and elliptic burners with varying degrees of premixedness (diffusion, fuel-rich, stoichiometric, and fuel-lean) is presented. Flame stability, visible flame height, flame radiation, global nitric oxide (NO) concentration, and inflame temperature and NO concentration profiles were measured. We found that the elliptic burner flames had lower liftoff velocity, were shorter, and radiated less heat to the surrounding as compared to circular burner flames. Global NO concentration decreased with an increase in air equivalence ratio for both circular and elliptic burner flames. Peak in-flame NO concentration along the flame centerline increased with a decrease in air equivalence ratio. Elliptic burner flames produced higher peak in-flame temperatures. Overall, the elliptic burner flames produced less peak NO as compared to circular burner flames at all air equivalence ratios except zero (diffusion flames) in accordance with the global emission measurements.  相似文献   

14.
考查了两段式多孔介质内预混气燃烧的温度与压力分布情况。建立了甲烷/空气预混气体在多孔介质内燃烧的二维数学模型,运用FLUENT软件求解瞬态控制方程的方法计算出燃烧稳定后多孔介质内的温度、与压力分布,并考查了不同当量比、多孔介质辐射衰减系数和导热系数对温度和压力分布的影响。结果表明,甲烷/空气预混气体在多孔介质中燃烧,当量比越大温度峰值越高,压力梯度越大;小孔介质辐射衰减系数的改变对温度分布和压力分布没有明显的影响,而大孔介质辐射衰减系数对温度分布和压力分布有较大的影响;增加多孔介质的导热系数,会使固相与气相温度均有所升高,燃烧区域压力降低。  相似文献   

15.
Increasing the efficiency of radiant burners by using polymer membranes   总被引:1,自引:0,他引:1  
Gas-fired radiant burners are used to convert fuel chemical energy into radiation energy for various applications. The radiation output of a radiant burner largely depends on the temperature of the combustion flame. In fact, the radiation output and, thus, the radiant efficiency increase to a great extent with flame temperature. Oxygen-enriched combustion can increase the flame temperature without increasing fuel cost. However, it has not been widely applied because of the high cost of oxygen production. In the present work, oxygen-enriched combustion of natural gas in porous radiant burners was studied. The oxygen-enriched air was produced passively, using polymer membranes. The membranes were shown to be an effective means of obtaining an oxygen-enriched environment for gas combustion in the radiant burners. Two different porous radiant burners were used in this study. One is a reticulated ceramic burner and the other is a ceramic fibre burner. The experimental results showed that the radiation output and the radiant efficiency of these burners increased markedly with rising oxygen concentrations in the combustion air. Also investigated were the effects of oxygen enrichment on combustion mode, and flame stability on the porous media.  相似文献   

16.
The combustion characteristics of liquefied petroleum gas inside porous heating burners have been investigated experimentally under steady-state and transient conditions. Cooling tubes were embedded in the postflame region of the packed bed of a porous heating burner. The flame speed, temperature profile, and [NOx] and [CO] in the product gases were monitored during an experiment. Due to the heat removal by the cooling tubes, a phenomenon termed metastable combustion was observed; this is that only one flame speed exists at a particular equivalence ratio for maintaining stable combustion within the porous bed of the porous heating burner. This behavior is quite different from that of porous burners without cooling tubes, in which an extended range of flame speeds usually is found for maintaining stable combustion. After metastable combustion has been established in a porous heating burner, a change in the equivalence ratio will stop the metastable combustion and drive the flame out of the packed bed. From the steady-state results, the porous heating burner was shown to maintain stable combustion under fuel-lean conditions with an equivalence ratio lower than the flammability limit of a normal free-burning system. The flame speed in a porous heating burner was found to decrease with an increase in the length of the porous bed. Combustion within a porous heating burner has the features of low flame temperature, extended reaction zone, high preheating temperature and low emissions of NOx and CO. The flame temperature ranged from 1050 to 1250 °C, which is ∼200 °C lower than the adiabatic flame temperature at the corresponding equivalence ratio. The length of the reaction zone could be more than 70 mm and the preheating temperature ranged from 950 to 1000 °C. Both [NOx] and [CO] were low, typically below 10 ppm.  相似文献   

17.
Premixed combustion in a porous medium burner is investigated numerically. A two‐dimensional steady, laminar flow model is used. A single‐step reaction of methane is used for the chemical kinetic model. The model also includes thermal radiation transport of the porous media that is placed inside the burner. The radiative transport equation is solved by using the discrete ordinate method. The results show that, for each equivalence ratio, the flame can be stabilized at various axial locations with different flame speeds. The flame temperature increases with the equivalence ratio and flame speed. Furthermore, the energy release rates are much higher than that of a free flame for the same equivalence ratio as a result of higher flame speed. © 2005 Wiley Periodicals, Inc. Heat Trans Asian Res, 35(1): 75–88, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20088  相似文献   

18.
The performance of a nonsprayed porous burner (NSPB) is investigated through both numerical and experimental studies. The major requirement of liquid fuel combustion systems is excellent fuel vaporization, which is accomplished by using porous medium. Instead of heterogeneous combustion, which occurs in free space of a conventional sprayed burner, a homogeneous combustion of vaporized kerosene and air takes place within a porous medium. The liquid kerosene is preheated and completely vaporized in the first porous medium before being mixed with preheated air in the mixing chamber (i.e., a small space between two porous media). Then the combustion occurs in the second porous medium. A subcooled boiling, single global reaction combustion, and local nonthermal equilibrium between fluid and solid phases with phase change under complex radiative heat transfer are considered. The model accuracy is validated by the experimental data before parametric study—that is, equivalence ratio and firing rate are performed. Result show that a self-sustaining evaporation without atomization and matrix-stabilized flame can be achieved in the NSPB by providing the radiant output efficiency in the same range as a conventional premixed gaseous porous burner. This indicates that the NSPB is one possible technology to replace conventional spray burners for future requirements.  相似文献   

19.
A porous burner stacked in turn with 3‐ and 9‐mm alumina pellets was established to perform C2H4 combustion experiments by acquiring the flammable limits, temperature variation characteristics, combustion wave velocity, pollutant emissions, and treatment efficiency. The burner operated well at equivalence ratios within 0.3 to 0.7. Larger alumina pellets widened the burner's lower flammable limit. As the flame propagated downstream, the higher premixed gas flow velocity and larger alumina pellets, the higher combustion wave velocity, whereas the circumstances were opposite as the flame spread upstream. The combustion temperature increased with the equivalence ratio and premixed gas flow velocity. In response to the effect of the alumina pellet dimension, 3‐mm alumina pellets corresponded to higher combustion temperatures, lower CO emissions, and higher treatment efficiency than those less than 9‐mm conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号