首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A furnace for use in conjunction with the X-ray spectrometer was developed which was capable of heating small powdered specimens in air to temperatures as high as 1850°C. This furnace was also used for the heating and quenching of specimens in air from temperatures as high as 1850°C. An area of two liquids coexisting between 20 and 93 weight % TiO2 above 1765°± 10°C. was found to exist in the system TiO2–SiO2, which is in substantial agreement with the previous work of other investigators. The area of immiscibility in the system TiO2–SiO2 was found to extend well into the system TiO2–ZrO2–SiO2. The two liquids were found to coexist over a major portion of the TiO2 (rutile) primary-phase area with TiO2 (rutile) being the primary crystal beneath both liquids. The temperature of two-liquid formation in the ternary was found to fall about 80°C. with the first additions of ZrO2 up to 3%. With larger amounts of ZrO2 the change in the temperature of the boundary of the two-liquid area was so slight as to be within the limits of error of the temperature measurement. Primary-phase fields for TiO2 (rutile), tetragonal ZrO2, and ZrTiO4 were found to exist in the system TiO2–ZrO2–SiO2. SiO2 as high cristobalite is known to exist in the system TiO2–ZrO2–SiO2.  相似文献   

2.
The phase relations of the systems ZrO2–TiO2 and ZrO2–TiO2–SiO2 were investigated. X-ray diffraction techniques served as the principal means of analysis. The binary system ZrO2–TiO2 was found to be one of partial solid solutions with no intermediate compounds. A eutectic point was found to exist at 50 to 55 weight % ZrO2 and 1600°C. A preliminary investigation of the ternary system ZrO2–TiO2–SiO2, although not extensive, resulted in a better understanding of this system, with a fairly accurate location of some of its boundary lines. A eutectic point was located at 2% ZrO2, 10% TiO2, and 88% SiO2 at approximately 1500°C.  相似文献   

3.
Thin films of crystalline TiO2 were deposited on self-assembled organic monolayers from aqueous TiCl4 solutions at 80°C; partially crystalline ZrO2 films were deposited on top of the TiO2 layers from Zr(SO4)2 solutions at 70°C. In the absence of a ZrO2 film, the TiO2 films had the anatase structure and underwent grain coarsening on annealing at temperatures up to 800°C; in the absence of a TiO2 film, the ZrO2 films crystallized to the tetragonal polymorph at 500°C. However, the TiO2 and ZrO2 bilayers underwent solid-state diffusive amorphization at 500°C, and ZrTiO4 crystallization could be observed only at temperatures of 550°C or higher. This result implies that metastable amorphous ZrTiO4 is energetically favorable compared to two-phase mixtures of crystalline TiO2 and ZrO2, but that crystallization of ZrTiO4 involves a high activation barrier.  相似文献   

4.
We characterized SiO2–TiO2 nano-hybrid particles, prepared using the sol–gel method, using high-resolution transmission microscopy. A few nanometer-ordered TiO2 anatase crystallites could be observed on the monodispersed SiO2 nanoparticle surface. The quantum size effect of the TiO2 anatase crystallites is attributed to the blue shift of the absorption band. The rough surface of the SiO2–TiO2 nano-hybrid particles was derived from the developed growth planes of the TiO2 anatase crystallites, grown from fully hydrolyzed Ti alkoxide that did not react with acetic acid during the crystallization process at 600°C thermal annealing.  相似文献   

5.
This paper focuses on the preparation and characterization of pure TiO2 and ZrO2 xerogels. The preparation method is based on a sol–gel technique using metal tert -amyloxides as precursors to produce nano-sized metal oxide particles which are subsequently packed in a gelation process, eventually resulting in microporous xerogele. The unsupported TiO2 and ZrO2 xerogele produced in this manner have a mean pore diameter less than 2 nm and more than 50% microporosity. However, these gels, in their pure form, are thermally stable only to 350°C. Improved thermal stabilities of mixed metal oxide xerogels will be reported elsewhere.  相似文献   

6.
The influence of supports on the preparation of TiO2 nanoparticles by the adsorption phase technique is studied in detailed. Series temperature experiments of two types of supports (named as SiO2 A and B) were used. Energy-dispersive analysis by X-ray indicates that the concentration of TiO2 on both supports decreases with temperature increasing. TiO2 quantity on SiO2 A decreases sharply between 40° and 60°C, whereas the temperature range for SiO2 B is between 30° and 50°C. X-ray diffraction (XRD) shows that grain size of TiO2 particles on two SiO2 surfaces is all below 7 nm. It is also shown by XRD that particles on SiO2 A decrease sharply as in the quantity curve of TiO2, but particles on SiO2 B all change gradually and TiO2 particles on SiO2 B are more uniform in transmission electron spectroscopy. The similarly of both supports is considered to be the reason for the similar changes in Ti concentration, and the different characteristics of the internal/external surface lead to variant quantity and grain size, as well as characteristics of TiO2.  相似文献   

7.
The wettability of binary and ternary glasses belonging to SiO2–Al2O3–ZrO2 diagram has been studied using the sessile drop technique at 1750° and 1800°C. The ternary SiO2–Al2O3–ZrO2 (90–5–5 wt%) glass has proved to be well appropriated as a molybdenum oxidation barrier coating. The addition of 5 wt% of MoO2 slightly improves its wettablity at higher temperatures without affecting its oxidation barrier properties. The Mo comes into the glass network as a mixture of Mo5+, Mo4+, and Mo6+. After oxidation at 1000°C in oxygen atmosphere, the molybdenum remains in the glass network as Mo6+.  相似文献   

8.
Anatase (TiO2)/silica (SiO2: 23.9–27.7 mol%) composite nanoparticles were directly synthesized from (i) the reaction of titanyl sulfate (TiOSO4) and sodium metasilicate (Na2SiO3) under mild hydrothermal conditions, (ii) the acidic precursor solutions of TiOSO4 and tetraethylorthosilicate (TEOS) by thermal hydrolysis, and (iii) the metal alkoxides, i.e., tetraisopropoxide (TTIP) and TEOS, by the sol–gel method. Their photocatalytic activities were evaluated by measurements of the relative concentration of methylene blue after UV irradiation. The as-prepared TiO2/SiO2 composite nanoparticles showed far more improved photocatalytic activity than the pure anatase-type TiO2. The composite nanoparticles formed from (i) TiOSO4 and Na2SiO3 as well as those from (ii) TiOSO4 and TEOS showed fairly good photocatalytic activity, and it was better than that of those synthesized from (iii) the metal alkoxides, which was suggested to be due to the difference in crystallinity of the anatase.  相似文献   

9.
Nanocrystalline titania (TiO2) anatase films are widely utilized as substrates for electron conduction in photoelectrochemical devices. In this paper, we subjected the lattice disorder of TiO2 anatase nanoparticles and the resulting nanocrystalline films to analysis with X-ray absorption fine structure spectroscopy. The TiO2 nanoparticles were synthesized from dehydration of a titanate and from a conventional sol–gel method. Although both specimens had similar first shell Ti4+ coordination numbers (CNs) of ca. 5.7, the titanate-derivative TiO2 was shown to be phase-pure anatase and the sol–gel TiO2 contained a minute amount of brookite impurity. After nanoparticle necking into films, the former TiO2 exhibited a negligible decrease in the CN, whereas the latter showed a significant decrease to a value of ca. 4.9. As a result, the titanate-derivative film is more efficient than the sol–gel one in transmitting electrons injected from a photoexcited dye. Significant lattice distortion near the grain boundaries of films are believed to occur during necking of the nanoparticles containing impurities. We have demonstrated that the synthesis of phase-pure nanoparticles is essentially important in fabricating films with a minimal degree of lattice disorder.  相似文献   

10.
Metastable tetragonal ZrO2 phase has been observed in ZrO2–SiO2 binary oxides prepared by the sol–gel method. There are many studies concerning the causes of ZrO2 tetragonal stabilization in binary oxides such as Y3O2–ZrO2, MgO–ZrO2, or CaO–ZrO2. In these binary oxides, oxygen vacancies cause changes or defects in the ZrO2 lattice parameters, which are responsible for tetragonal stabilization. Since oxygen vacancies are not expected in ZrO2–SiO2 binary oxides, tetragonal stabilization should just be due to the difficulty of zirconia particles growing in the silica matrix. Furthermore, changes in the tetragonal ZrO2 crystalline lattice parameters of these binary oxides have recently been reported in a previous paper. The changes of the zirconia crystalline lattice parameters must result from the chemical interactions at the silica–zirconia interface (e.g., formation of Si–O–Zr bonds or Si–O groups). In this paper, FT-IR and 29Si NMR spectroscopy have been used to elucidate whether the presence of Si–O–Zr or Si–O is responsible for tetragonal phase stabilization. Moreover, X-ray diffraction, Raman spectroscopy, and transmission electron microscopy have also been used to study the crystalline characteristics of the samples.  相似文献   

11.
The interfaces between metal organic chemical vapor deposited PbTiO3 thin films and various diffusion barrier layers deposited on Si substrates were investigated by transmission electron microscopy. Several diffusion barrier thin films such as polycrystalline TiO2, amorphous TiO2, ZrO2, and TiN were deposited between the PbTiO3 thin film and Si substrate, because the deposition of PbTiO3 thin films on bare Si substrates produced Pb silicate layers at the interface irrespective of the deposition conditions. The TiO2 films were converted to PbTiO3 by their reaction with diffused Pb and O ions during PbTiO3 deposition at a gubstrate temperature of 410°C. Further diffusion of Pb and O induces formation of a Pb silicate layer at the interface. ZrO2 did not seem to react with Pb and O during PbTiO3 deposition at the same temperature, but the Pb and O ions that diffused through the ZrO2 layer formed a Pb silicate layer between the ZrO2 and Si substrate. The TiN films did not seem to react with Pb and O ions during the deposition of PbTiO3 at 410°C, but reacted with PbTiO3 to form a lead-deficient pyrochlore during postdeposition rapid thermal annealing at 700°C. However, TiN could effectively block the diffusion of Pb and O ions into the Si substrate and the formation of Pb silicate at the interface.  相似文献   

12.
High-energy ball milling initiates a solid-state reaction in an equimolar mixture of TiO2 and ZrO2. The first stage of ball milling induced the transformation of anatase TiO2 to high-pressure phase TiO2 (II), isostructural with ZrTiO4. The formation of solid solutions monoclinic ZrO2/TiO2 and TiO2 (II)/ZrO2 was observed in the intermediate stage. Afterward, a nanosized ZrTiO4 phase was formed in the milled product from the TiO2 (II)/ZrO2 solid solution. The sintering of the milled product at a temperature <1100°C was examined in situ by Raman spectroscopy. The full solid-state reaction toward ZrTiO4 ceramic is completed at a temperature considerably lower than reported in the literature.  相似文献   

13.
SiO2–TiO2–methylcellulose (MC) composite materials processed by the sol-gel technique were studied for optical waveguide applications. Dense, crack-free and homogeneous films as thick as 2 μm were obtained via the organic binder MC-assisted sol–gel process and single coating with low-temperature treatment. Light waveguiding in such hybrid film was demonstrated at a wavelength of 650 nm. About 1.1 dB/cm or lower propagation loss for the SiO2 (80 mol%)–TiO2 (20 mol%)–MC (22 wt%) film can be achieved. The effects of thermal treatment on the structure and properties of the gel films were also investigated.  相似文献   

14.
Data obtained by quenching, thermal, and high-temperature X-ray techniques are presented for the three binary systems CaF2–BeF2, MgF2–BeF2, and LiF–MgF2. The systems CaF2–BeF2 and MgF2–BeF2 are presented as weakened models of the systems ZrO2–SiO2 and TiO2–SiO2, respectively. The compound CaBeF4 is a model of ZrSiO4 (zircon). New data obtained for the system LiF–MgF2 explain many discrepancies among the results of previous authors. Solid solution is almost complete between LiF and MgF2 at elevated temperatures, but a small gap occurs at the eutectic (735°C.) with extensive exsolution at lower temperatures.  相似文献   

15.
The effect of zirconium ions on glass structure and proton conductivity was investigated for sol-gel-derived P2O5–SiO2 glasses. Porous glasses were prepared through hydrolysis of PO(OCH3)3, Zr(OC4H9)4, and Si(OC2H5)4. Chemical bonding of the P5+ ions was characterized using 31P-NMR spectra. The phosphorous ions, occurring as PO(OH)3 in the ZrO2-free glass, were polymerized with one or two bridging oxygen ions per PO4 unit with increased ZrO2 content. The chemical stability of these glasses was increased significantly on the addition of ZrO2, but the conductivity gradually decreased from 26 to 12 mS/cm at room temperature for 10P2O5·7ZrO2·83SiO2 glass. A fuel cell was constructed using 10P2O5·5ZrO2·85SiO2 glass as the electrolyte; a power of ∼4.5 mW/cm2 was attained.  相似文献   

16.
Gel-glasses of various compositions in the x ZrO2.(10 – x )SiO2system were fabricated by the sol–gel process. Precipitation due to the different reactivities between tetraethyl orthosilicate (TEOS) and zirconium(IV) n -propoxide has been eliminated through the use of 2-methoxyethanol as a chelating agent. Thermal treatment of these gels produced crystalline ZrO2particles. While monoclinic is the stable crystalline phase of zirconia at low temperatures, the metastable tetragonal phase is usually the first crystalline phase formed on heat treatment. However, stability of the tetragonal phase is low, and it transforms to the monoclinic phase on further heat treatment. In this study, it has been found that the transformation temperature increases as the SiO2content in the ZrO2–SiO2 binary oxide increases. The most significant results were from samples containing only 2 mol% SiO2, where the metastable tetragonal phase formed at low temperatures and remained stable over a broad temperature range. X-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy were used to elucidate the structure of these binary oxides as a function of temperature.  相似文献   

17.
Anatase-type TiO2 powder containing sulfur with absorption in the visible region was directly formed as particles with crystallite in the range 15–88 nm by thermal hydrolysis of titanium(III) sulfate (Ti2(SO4)3) solution at 100°–240°C. Because of the presence of ammonium peroxodisulfate ((NH4)2S2O8), the yield of anatase-type TiO2 from Ti2(SO4)3 solution was accelerated, and anatase with fine crystallite was formed. Anatase-type TiO2 doped with ZrO2 up to 9.8 mol% was directly precipitated as nanometer-sized particles from the acidic precursor solutions of Ti2(SO4)3 and zirconium sulfate in the presence and the absence of (NH4)2S2O8 by simultaneous hydrolysis under hydrothermal conditions at 200°C. By doping ZrO2 into TiO2 and with increasing ZrO2 content, the crystallite size of anatase was decreased, and the anatase-to-rutile phase transformation was retarded as much as 200°C. The anatase-type structure of ZrO2-doped TiO2 was maintained after heating at 1000°C for 1 h. The favorable effect of doping ZrO2 to anatase-type TiO2 on the photocatalytic activity was observed.  相似文献   

18.
Multiferroic BiFeO3 thin films of huge polarization have been successfully realized by using SrRuO3 as a buffer layer on a Pt/TiO2/SiO2/Si substrate. They consist of a single perovskite phase and are nearly randomly orientated, where the SrRuO3 buffer layer lowers the crystallization temperature and improves the crystallinity of BiFeO3. With increasing deposition temperature during magnetron sputtering, they undergo an apparent grain growth and reduction in surface roughness. The multiferroic thin films deposited on the SrRuO3-buffered Pt/TiO2/SiO2/Si substrate at higher temperatures show much improved polarization and reduced coercive field, together with a lowered leakage current. A huge remnant polarization (2 P r) of 150 μC/cm2 and a coercive field (2 E c) of 780 kV/cm were measured for the BiFeO3 film deposited at 650°C.  相似文献   

19.
Data on compatibility triangles and liquid immiscibility are presented for the portion of the ternary system bounded by SiO2, Li2O, SiO2, Li0O TiO2, and TiO2. X-ray data showed the ternary compound Li2O. TiO2. SiO2 to be tetragonal with a = 6.41 a.u. and C = 4.40 a.u. The compound is uniaxial negative with 1.81 < < 1.82 and 1.83 < < 1.84. It melted to two liquids at 1207° 3°C. Seven joins were established by solid-state, fusion, and quenching methods. Using electron microscopy and petrographic microscope and quenching data, liquid immiscibility originating in the binary system SiO2-TiO2 was shown to extend over a substantial portion of the ternary system.  相似文献   

20.
Quantitative X-ray diffraction and microscopy were used to study the morphology development and overall crystallization rate between 900° and 990°C of MgO-Al2O3−SiO2 glasses with added ZrO, TiO2, CaF2, or CeO2. Three basic stages of micro-structural development were distinguishable: I, an induction period, II, a spherulitic crystallization stage, and III, a final crystallization stage. The duration of the induction period, the crystallization rate of the high-quartz solid solution, and the microstructures varied markedly with prior nucleation treatment and the type of modifier present in a glass of nearly equal silica content. The roles of major (high-quartz ss , high cordierite) and of minor crystalline and liquid phases in textural development are discussed, and it is postulated that nucleants (ZrO2, TiO2) act also as growth-modifying "impurities" in crystal growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号