首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
综述了国内外关于石墨烯改性防弹材料的研究进展,包括石墨烯改性陶瓷复合材料、石墨烯改性芳纶材料、石墨烯改性超高分子量聚乙烯等其它防弹材料,揭示了石墨烯对防弹材料各项性能的良好的改善效果及其在防弹领域的巨大应用潜力,尤其是在制备轻量化、高性能的防弹材料方面具有较好的应用前景.此外,简要介绍了石墨烯薄膜、多层石墨烯片、石墨烯...  相似文献   

2.
中国专利     
<正>一种石墨烯微片/高密度聚乙烯复合材料及其制备方法本发明公开了一种高密度聚乙烯/石墨烯微片复合材料及其制备方法,原料为石墨烯微片、高密度聚乙烯和硅烷偶联剂。本发明通过使用石墨烯微片来改善高密度聚乙烯的性能,制备了一种高密度聚乙烯复合材料,极大提高了复合材料的摩擦磨损性能和力学性能;该高密度聚乙烯/石墨烯微片复合材料成本  相似文献   

3.
以氧化石墨烯为原料,将油酸分子连接在石墨烯的表面,得到油酸功能化石墨烯,并通过溶液法将其与聚乙烯基体共混获得聚乙烯/功能化石墨烯复合材料,研究了复合材料的导电性能。结果表明,在低石墨烯含量下可大幅提高聚乙烯的导电性能。当油酸功能化石墨烯质量分数为8%时,复合材料的电导率达1 S/m;当油酸功能化石墨烯质量分数为10%时,复合材料的电导率达3 S/m。聚乙烯/功能化石墨烯复合材料在电缆屏蔽、电磁屏蔽和抗静电领域具有应用价值。  相似文献   

4.
母林鹏  王娜  苏杰  何周坤  兰小蓉 《橡胶科技》2024,22(4):0185-0191
综合性能优异的石墨烯改性硅橡胶复合材料在航天航空、电子电器以及医药卫生等领域展现出广泛的应用前景。总结石墨烯改性硅橡胶复合材料的主要制备方法及其优缺点,重点介绍具有特殊润湿性、导热性能和导电性能的石墨烯改性硅橡胶功能复合材料的研究进展。提高石墨烯的功能改性效率及石墨烯在复合材料中的含量和均匀分散性、实现复合材料的多功能化等是未来研究的难点和重点。  相似文献   

5.
阐述了通过石墨烯改性以及优化复合材料制备工艺来提高石墨烯在硅橡胶中分散性的研究进展,重点介绍了石墨烯的共价键改性和非共价键改性,以及溶液共混法和直接共混法两种石墨烯/硅橡胶复合材料制备方法。论述了石墨烯可以有效的提高硅橡胶复合材料的强度、导热率、热分解温度和电导率等。最后对石墨烯/硅橡胶复合材料在航空航天领域的研究前景进行了展望。  相似文献   

6.
综述了石墨烯的合成和表征方法,以及提高聚合物与石墨烯相互作用的方法,强调了功能化修饰石墨烯的重要性及其与聚合物混合后形成的热固性复合材料的性能。石墨烯的研究方向主要包括基于石墨烯的纳米复合材料的制备及改性、具有特殊性能的石墨烯改性热固性聚合物复合材料等。分析了环氧基树脂/石墨烯复合材料的合成与性能,功能化修饰石墨烯的方法,以及石墨烯改性热固性聚合物复合材料中界面的作用及其对复合材料整体性能的影响。  相似文献   

7.
采用氧化还原法、以杨树叶为原料制备石墨烯,用硅烷偶联剂γ-氨丙基三乙氧基硅烷对石墨烯进行改性以制备改性石墨烯。通过机械共混法制备了改性石墨烯/硅橡胶复合材料,研究了改性石墨烯对硅橡胶力学性能的影响。结果表明,与未改性石墨烯相比,改性石墨烯可以在硅橡胶中更好地分散。当加入0. 1份(质量)改性石墨烯时,改性石墨烯/硅橡胶复合材料的力学性能最好,拉伸强度和扯断伸长率比石墨烯/硅橡胶复合材料分别提高了36. 2%和19. 4%,耐磨性能提高了57. 1%。  相似文献   

8.
简单概括了石墨烯/聚合物复合材料的制备方法,主要综述了石墨烯对聚合物复合材料机械性能、热学性能、电学性能、摩擦性能和阻燃性能的改性研究,最后对石墨烯改性聚合物复合材料提出了展望。  相似文献   

9.
中国专利     
<正>高密度聚乙烯纳米复合材料及其制备本发明涉及高密度聚乙烯纳米复合材料及其制备方法。由填料和高密度聚乙烯接枝马来酸酐按以下质量份数熔融共混制得:填料0.25~1.00 phr,高密度聚乙烯接枝马来酸酐99.75~99.00 phr;所述填料为石墨烯和碳纳米管。该高密度聚乙烯纳米复合材料成本低廉,制备方法简单、易操作、实用性广;充分发挥石墨烯和碳纳米管的协同作用,并对高密度聚乙烯基  相似文献   

10.
厉枝  宗成中 《橡胶工业》2018,65(9):1070-1074
综述纳米二氧化硅、碳纳米管、石墨烯等多种不同维度纳米填料改性氯化聚乙烯橡胶的研究进展。介绍利用不同填料改性氯化聚乙烯橡胶的机理及改性后氯化聚乙烯橡胶的应用概况,提出不同填料改性氯化聚乙烯橡胶的性能优化和应用的展望。  相似文献   

11.
采用含类基体基团的乙烯基三甲氧基硅烷修饰氧化石墨烯(GO),再用"一锅法"将其还原得到功能化石墨烯(F-GE),通过溶剂浇注法制备出界面性能优良的聚偏氟乙烯导热复合材料(PVDF/F-GE).利用红外光谱仪(FTIR)、扫描电子显微镜(SEM)、热导率测试仪、电子拉力试验机对复合材料的改性状态、微观形貌、导热性能和力学...  相似文献   

12.
本文以高密度聚乙烯(HDPE)为基体,以自制的h-G-C-2/1体系杂化填料为导热填料,制备了GNPs/CNTs/HDPE导热高分子复合材料,重点对比了杂化填料和复配填料对GNPs/CNTs/HDPE复合材料在导热、导电及力学性能方面的影响。结果表明,GNPs/CNTs/HDPE导热高分子复合材料的拉伸强度为31.9 MPa,冲击强度为22.1 kJ/m^2,体积电阻率为690 MΩ·cm,热导率为0.759 W/(m·K),满足集成电路封装用技术参数要求。杂化填料的分散性优于复配填料,杂化填料在提高复合材料的拉伸性能方面优于复配填料,复配填料在提高复合材料的热导率方面优于杂化填料。本文所获得的研究成果为制备新型综合性能优异的集成电路封装用导热高分子复合材料提供了一条新的思路。  相似文献   

13.
以双酚A、3氨丙基三乙氧基硅烷和多聚甲醛为原料,通过曼尼希反应合成了氨基硅氧烷功能化苯并嗪(B-TES);将B-TES引入双酚A苯胺型苯并嗪(BA-a)与氧化石墨烯(GO)组成的复合体系中,通过傅里叶变换红外光谱仪、差示扫描量热仪和旋转流变仪研究了复合体系的热固化过程;激光导热仪测试BA-a/GO/B-TES复合材料的热导率。结果表明,当GO/B-TES添加量从1 %(质量分数,下同)增大到6 %时,复合材料的热导率从0.29 W/(m·K)增大到0.56 W/(m·K);采用有效介质模型计算GO与聚合物之间的界面热阻(Rb),发现B-TES能够使Rb由150×10-9 m2·K/W降低至130×10-9 m2·K/W;BA-a/GO/B-TES复合材料还表现出低表面能、高热稳定性的特性。  相似文献   

14.
碳纤维的表面改性对导热顺丁橡胶性能的影响   总被引:4,自引:0,他引:4  
陶慧  陈双俊  张军 《弹性体》2012,22(3):37-42
研究了碳纤维的表面改性方法对碳纤维/顺丁橡胶(BR)复合材料的硫化特性、门尼粘度、导热性能和力学性能的影响.实验结果表明,碳纤维/顺丁橡胶复合材料与顺丁橡胶空白样相比,其硫化速度、导热系数与力学性能都有明显的提高.而碳纤维的表面改性对碳纤维/顺丁橡胶复合材料的硫化特性数据、门尼粘度和导热系数影响并不明显,加入碳纤维后的未改性的碳纤维/顺丁橡胶复合材料的导热性能最佳,其导热系数为0.527 W/(m·K),为顺丁橡胶空白样的1.7倍;经过高温氧化后碳纤维填充复合材料力学性能有所提高,其拉伸强度为2.39 MPa.  相似文献   

15.
王登武  王芳 《中国塑料》2015,29(4):54-57
采用先酸化再空气氧化的方法对碳纳米管(CNTs)进行了纯化处理,并制备了2种环氧树脂(EP)/CNTs导热复合材料。研究了不同含量的CNTs及纯化CNTs对复合材料的导热性能、冲击性能及弯曲性能的影响。结果表明,纯化处理后,CNTs表面的催化剂粒子和无定形碳被去除,得到了纯净CNTs;当纯化CNTs含量为1.5 %时(质量分数,下同),材料的冲击强度和弯曲强度最高,分别为24.95 kJ/m2、127.2 MPa;当纯化CNTs含量为1.5 %时,复合材料的热导率可达1.237 W/(m·℃)。  相似文献   

16.
主要研制了导热聚对苯二甲酸丁二醇酯/聚酰胺复合材料(PBT/PA),选用纳米氧化镁(MgO)为导热填料。首先探讨了基体树脂配比PBT/PA对PBT/PA/MgO复合材料导热和力学性能的影响;然后固定基体树脂配比,考察了纳米氧化镁的添加量对PBT/PA/MgO复合体系的导热性能和力学性能的影响。实验结果表明,当PBT/PA配比为1∶1,纳米氧化镁添加量为40wt%时PBT/PA/MgO复合材料在保持一定的力学性能的基础上热导率达到0.787W/(m.K),表明该复合体系具有优良的导热性能和力学性能。此外还研究了不同加工方法对复合材料力学性能和导热性能的影响,采用二步法制备的复合材料的导热性能和力学性能较一步法更为优异。利用二步加工法,同时通过调节PBT/PA配比控制共混物的双连续相形态,从而制备出导热性能较好的PBT/PA/MgO复合材料。  相似文献   

17.
In this work, the role of graphene flake size on the properties of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) composites was studied. Graphene flakes were added to PVDF-HFP using a solution mixing and molding process. By increasing graphene particle size and its concentration in the composites, higher electrical conductivity, in-plane thermal conductivity, and elastic modulus were achieved. Maximum tensile strength was obtained for the composites with average graphene flake size of 2, 5, and 7 μm at graphene concentrations of 10 wt%, 5 wt%, and 20 wt%, respectively. Thick flexible composite films (0.2–0.4 mm) with ultra-high in-plane electrical conductivity (~4500 S/m), in-plane thermal conductivity (~26 W/m/K), and tensile strength (~50 MPa) were obtained for the samples containing the graphene flakes with a larger average particle size of 7 μm. To our knowledge, the first two values are larger than any other values reported in the literature for PVDF-based composites.  相似文献   

18.
采用熔融共混法制备了一系列导热绝缘的低密度聚乙烯/马来酸酐接枝聚乙烯/六方氮化硼(PE-LD/PE-g-MAH/h-BN新型泡沫塑料,研究了相容剂PE-g-MAH的加入、h-BN含量对PE-LD/PE-g-MAH/h-BN泡沫体系导热性能、绝缘性能、力学性能及热稳定性的影响。结果表明,PE-g-MAH有利于增加PE?LD与h?BN的界面黏结,增强泡沫体系拉伸强度和断裂伸长率,显著提高其热导性能;当h-BN含量为30 %时, PE-LD/PE-g-MAH/h-BN泡沫体系的导热率为0.256 W/(m·K),相对于PE-LD/h-BN泡沫体系的0.217 W/(m·K) 和纯PE-LD泡沫体系的0.039 W/(m·K),热导率分别提高1.18和6.57倍,同时保持较好的绝缘性和热稳性。  相似文献   

19.
采用多巴胺(DA)和3?氨基丙基?三甲氧基硅烷(APTMS)对碳纳米管(CNTs)进行DA辅助共修饰,并用溶剂浇铸法制备具有优异热性能和力学性能的聚偏氟乙烯(PVDF)复合薄膜;采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、差示扫描量热仪(DSC)、X射线光电子能谱仪(XPS)、热常数分析仪和电子单纱强力仪等对材料的微观形貌、结晶度、导热性能和力学性能进行了表征。结果表明,经DA和APTMS共修饰后的PDA?CNTs?NH2具有良好的分散性能;PDA?CNTs?NH2的加入,有利于改善PVDF复合薄膜的热稳定性;与纯PVDF薄膜和PVDF/CNTs复合薄膜相比,PVDF/PDA?CNTs?NH2复合薄膜的导热性能和力学性能显著增强,在8 %(质量分数,下同) PDA?CNTs?NH2的填料负载下,其热导率达到0.337 9 W/(m·K),是纯PVDF薄膜的1.78倍,其拉伸强度为52.67 MPa,是纯PVDF复合薄膜的1.36倍。  相似文献   

20.
朱道峰 《中国塑料》2021,35(8):100-104
以自制接枝共聚相容剂,将回收聚对苯二甲酸乙二醇酯(rPET)分别与全新线性低密度聚乙烯(PE?LLD)和回收聚乙烯(rPE?HD)共混改性,采用具备免干燥和侧面强制喂料系统的同向双螺杆挤出机熔融挤出rPET/PE合金片材(rPET与PE质量比为80∶20),研究了不同厚度合金片材的性能。结果表明,使用rPET制备的合金片材产品外观品质保持较好; rPET/PE合金片材具有良好的力学性能,其中拉伸强度大于39 MPa,断裂伸长率随片材厚度增加而递减,厚度为2.5 mm的rPET/rPE合金片材拉伸强度为39.7 MPa,断裂伸长率为21 %,冲击强度为12 kJ/m2,适合应用于吸塑箱包、土工格室等;免干燥和侧面强制喂料系统,可以减少合金片材加工流程,节约能源,设备产量提了117 %。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号