首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
目的研究白光光照对交链孢(Alternaria)毒素合成的影响。方法在光/暗培养条件下,比较分析白光光照对2种交链孢菌株(ATCC 66981和Pear-3)的菌丝生长、孢子形成以及毒素合成的影响。结果持续白光照射对交链孢菌丝生长影响不显著,而显著抑制其孢子形成。光照刺激交链孢菌ATCC66981中交链孢酚(alternariol, AOH)、交链孢酚单甲醚(alternariol monomethyl ether, AME)和腾毒素(tentoxin, TEN)3种毒素的产生。菌株持续光照培养30d,AOH、AME和TEN毒素浓度分别为120、182和173?g/L;较之黑暗培养,分别增加了1.1、5.9和9.6倍。光照抑制交链孢菌Pear-3中细交链孢菌酮酸(tenuazonic acid, TeA)毒素的合成。菌株光照培养6 d, TeA毒素浓度达到142?g/L;而黑暗培养后其浓度高达325?g/L,毒素产率增加了1.3倍。结论光照不影响交链孢菌丝生长,而对孢子形成影响显著;持续白光照射能够促进交链孢中AOH、AME和TEN毒素的产生,而抑制TeA毒素的产生。  相似文献   

2.
目的 明确光调控交链孢(Alternaria)产真菌毒素的作用。方法 在光/暗培养条件下,比较分析光照对2种交链孢菌株(ATCC 66981和Pear-3)的菌丝生长、孢子形成以及毒素合成的影响。结果 持续白光照射对交链孢菌丝生长影响不显著,而显著抑制其孢子形成。光照刺激交链孢菌ATCC 66981中交链孢酚(alternariol, AOH)、交链孢酚单甲醚(alternariol monomethyl ether, AME)和腾毒素(tentoxin, TEN)3种毒素的产生。菌株持续光照培养30天,AOH、AME和TEN毒素浓度分别为120、182和173 g/L;较之黑暗培养,分别增加了1.1、5.9和9.6倍。光照抑制交链孢菌Pear-3中细交链孢菌酮酸(tenuazonic acid, TeA)毒素的合成。菌株光照培养6天,TeA毒素浓度即已达142 g/L;而黑暗培养甚至高达325 g/L,毒素产率反而增加了1.3倍。结论 光照不影响交链孢菌丝生长,而对孢子形成影响显著;持续白光照射能够促进交链孢中AOH、AME和TEN毒素的产生,而抑制TeA毒素的产生。  相似文献   

3.
交链孢毒素是一类广泛存在的食品污染物,交链孢酚(AOH)、交链孢酚单甲醚(AME)、细交链孢菌酮酸(TeA)、腾毒素(TEN)经常同时出现,然而目前对其联合毒性的评估十分有限。目的:以BRL-3A细胞为研究模型,评估常见4种交链孢毒素对肝脏细胞的联合毒性。方法:应用CCK-8试剂盒检测10~200 μmol/L交链孢毒素单独或联合处理BRL-3A细胞24,48,72 h细胞活性的变化。基于组合指数法,分析它们混合暴露后的联合毒性效应。结果:AOH、AME、TeA和TEN单独处理BRL-3A细胞后,能够降低细胞存活率,并呈现剂量和时间依赖性,其IC50分别为38.11,41.25,49.05,358.58 μmol/L(48 h)。AOH-AME、AME-TEN和TeA-TEN组合的毒性在IC10~IC90水平上都表现出累加或协同效应。AOH-AME-TeA、AME-TeA-TEN和AOH-AME-TeA-TEN组合的毒性在低剂量时具有拮抗效应,在高剂量时具有协同效应,而其它组合与之相反。结论:食品中常见的4种交链孢毒素均能不同程度地抑制BRL-3A细胞的增殖,具有肝脏细胞毒性,其毒性强度顺序为AOH > AME > TeA >> TEN。当它们同时出现时,其毒性作用可能为协同效应,提示今后应重点关注毒素的联合毒性风险,以更精准地评估其安全风险。  相似文献   

4.
探讨固相萃取方法,超高效液相色谱串联质谱仪(UPLC-MS/MS)测定麦芯粉中4种交链孢毒素。样品经0.05 mol/L Na H2PO4(pH 3.0)-乙腈-甲醇超声提取(450+450+100,V/V),上清液过HLB固相萃取柱净化,以1.0 mmol/L氨水溶液(pH 8.3)-甲醇为流动相,经Waters CORTECS C18(4.6×100 mm,2.7μm)柱分离梯度洗脱,采用电喷雾负离子(ESI-)、多反应监测(MRM)模式检测;以基质加标工作曲线定量。细交链孢菌酮酸(TeA)、交链孢酚(AOH)在2.0μg/L~100μg/L浓度范围内,腾毒素(TEN)、交链孢酚单甲醚(AME)在0.2μg/L~10.0μg/L浓度范围内线性关系良好,相关系数(R2)均大于0.998。回收率为76.3%~107.5%,TeA、AOH检出限和定量限分别为1.0μg/kg和3.0μg/kg、TEN、AME检出限和定量限分别为0.1μg/kg和0.3μg/kg。该方法灵敏度高,简便,准确。适于测定麦芯粉中的交链孢毒素。  相似文献   

5.
失活乳酸菌去除柑橘汁中链格孢霉毒素TeA工艺优化   总被引:1,自引:0,他引:1  
葛娜  彭帮柱  徐晓云  潘思轶 《食品科学》2017,38(14):256-262
柑橘果实易受链格孢霉菌等病原微生物的污染产生并积累链格孢霉毒素,其中细交链孢菌酮酸(tenuazonic acid,TeA)是毒性最强的一种链格孢霉毒素,具有潜在的致癌性和细胞毒性,对消费者的健康和安全构成严重威胁。为降低柑橘汁中TeA含量,本研究利用灭活乳酸菌菌体细胞作为吸附剂,主要研究其吸附去除柑橘汁中TeA的工艺条件。首先通过单因素试验分析灭活乳酸菌菌粉添加量、吸附时间、TeA初始质量浓度和pH值对TeA去除率的影响,然后采用响应面法Box-Behnken设计对吸附去除橙汁中TeA工艺条件进行了优化,得到最佳工艺参数为灭活乳酸菌菌粉添加量1.20g/20mL、吸附时间11.43h、TeA初始质量浓度250μg/L、橙汁pH3.15,在此条件下,TeA去除率为86.98%。同时建立了TeA去除率与各影响因素间的二次多项式回归模型,并对该模型进行了验证,结果表明模型拟合程度高,预测效果好。  相似文献   

6.
为确定链格孢属真菌发酵液和鲜食葡萄中链格孢酚(AOH)、链格孢酚甲基乙醚(AME)、链格孢霉素(ALT)和细交链孢菌酮酸(TeA)4种链格孢霉毒素的含量,对我国两个鲜食主栽品种‘巨峰’‘红地球’的50份样品表皮的生物性危害因子进行分离鉴定。结果表明,鲜食葡萄表皮的生物性危害因子主要为曲霉属、链格孢属和青霉属真菌,其中链格孢属真菌主要为Alternaria alternata,而A. alternata的产毒发酵液中能检测到AOH、AME和TeA,其中TeA的含量较高。基于链格孢毒素的毒性,要加强葡萄及其制品的风险监测。  相似文献   

7.
目的 检测不同大小的交链孢菌病斑及其外延组织中交链孢毒素残留量, 明确交链孢毒素在番茄中的迁移规律。方法 样品经80%乙腈溶液提取后, 通过自制固相萃取柱排除杂质干扰, 流出液经氮吹至近干后, 采用超高效液相色谱-串联质谱仪(ultra performance liquid chromatography-tandem mass spectrometry, UPLC-MS/MS)测定交链孢毒素残留量。结果 不同大小病斑组织中均检测到高浓度的4种交链孢毒素残留, 包括交链孢酚(alternariol, AOH), 交链孢酚单甲醚(alternariol monomethyl ether, AME), 细交链格孢酮酸(tenuazonic acid, TeA)和交链孢烯(altenuene, ALT); 外延组织中仅在病斑周围1 cm处检测到TeA, 含量为病斑组织的1/10左右。结论 番茄交链孢毒素能向病斑外延组织扩散, 但扩散情况与病斑大小无直接联系, 病斑周围2 cm处虽然用超高效液相色谱-串联质谱仪检测不到交链孢毒素, 但仍存在安全风险, 因此, 建议食用时或生产中将病斑及其外延2 cm范围内组织均剔除。  相似文献   

8.
目的 了解2016—2017年河南省市售小麦粉中4种交链孢毒素的污染情况。方法 采集2016—2017年河南省粮食主产区中9个地市的182份小麦粉样品,按照《国家食品污染和有害因素风险监测工作手册》方法进行检测,对检测数据采用卡方检验和相关性分析进行统计学分析。结果 9个地区的182份小麦粉样品中均检出4种交链孢毒素,其中交链孢酚(AOH)检出范围为0.50~14.21 μg/kg,检出率为10.4%(19/182);交链孢酚单甲醚(AME)检出范围为0.05~38.73 μg/kg,检出率为42.9%(78/182);交链孢菌酮酸(TeA)检出范围为0.50~134.23 μg/kg,检出率为91.2%(166/182);腾毒素(TEN)检出范围为0.05~17.42 μg/kg,检出率为45.6%(83/182)。结论 河南省省内流通环节(农贸市场和商店)小麦粉中均存在交链孢毒素的污染,但污染水平与文献报道相比,处于较低水平。  相似文献   

9.
目的 通过对番茄病果中链格孢病原菌的分离鉴定及产毒分析,为番茄采收后病害防控提供理论依据。方法 采集福建省5个县市番茄病果,通过切片和组织分离法从番茄病害部位分离纯化病原菌,结合形态学特征和分子生物学对病原菌进行鉴定。根据柯赫氏法则确定病原菌的致病性,并利用超高效液相串联质谱法对分离得到的交链格孢菌产毒能力进行检测分析。结果 在发病番茄病害部位共分离得到的 3株互隔链格孢菌株均具产毒能力,但毒素种类和产毒能力各有不同,其中NH06菌株产毒量最高,可产生细交链格孢酮酸(tenuazonic acid,TeA )、交链孢酚 (alternariol, AOH)、交链孢酚单甲醚(alternariol monomethyl ether, AME)、交链孢烯(altenuene,ALT )、腾毒素 (tentoxin,TEN ) 5种毒素,而NP002和NH07仅检出产生4种毒素。结论 福建省番茄种植产区内存在交链格孢菌的污染,且产毒种类多,因此,在番茄种植产区内病果的处理应引起关注和重视。  相似文献   

10.
链格孢霉毒素细交链格孢菌酮酸的研究进展   总被引:5,自引:0,他引:5  
链格孢霉(Alternaria)是污染食品和饲料最普遍的真菌之一。细交链格孢菌酮酸(tenuazonic acid,TeA)是链格孢霉毒素中最为重要的一种,可广泛污染蔬菜、水果及谷物。本文综述TeA毒素的来源及污染情况、理化性质及其毒性、检测方法等,并就未来研究方向进行展望。  相似文献   

11.
Mechanisms of chlorination of natural organic matter (NOM) in surface water (Lake Washington) were explored via differential spectroscopy. Two types of differential spectra (overall and incremental) were generated for this water chlorinated at pH 7 using varying chlorine doses and reaction times. The differential spectra contain two kinetically and spectroscopically distinct components. One of these components is attributable to functional groups that react rapidly with chlorine, while the other reflects transformations of slowly reacting chromophores that arise following the depletion of the fast chromophores. Small concentrations of disinfection byproducts (DBPs), exemplified in this study by dichloroacetic acid and chloral hydrate, were produced during the initial phase of chlorination, when the fast-reacting chromophores were being consumed. Rather, the release of those DBPs was correlated with the breakdown of the slowly reacting chromophores.  相似文献   

12.
Alternative technologies to disinfect drinking water such as ultraviolet (UV) disinfection are becoming more widespread. The benefits of UV disinfection include reduced risk of microbial pathogens such as Cryptosporidium and reduced production of regulated drinking water disinfection byproducts (DBPs). The objective of this research was to determine if mammalian cell cytotoxicity and genotoxicity varied in response to different chlorination protocols with and without polychromatic medium pressure UV (MPUV) and monochromatic low pressure UV (LPUV) disinfection technologies. The specific aims were to analyze the mammalian cell cytotoxicity and genotoxicity of concentrated organic fractions from source water before and after chlorination and to determine the cytotoxicity and genotoxicity of the concentrated organic fractions from water samples treated with UV alone or UV before or after chlorination. Exposure of granular activated carbon-filtered Ohio River water to UV alone resulted in the lowest levels of mammalian cell cytotoxicity and genotoxicity. With combinations of UV and chlorine, the lowest levels of cytotoxicity and genotoxicity were observed with MPUV radiation. The best combined UV plus chlorine methodology that generated the lowest cytotoxicity and genotoxicity employed chlorination first followed by MPUV radiation. These data may prove important in the development of multibarrier methods of pathogen inactivation of drinking water, while limiting unintended toxic consequences.  相似文献   

13.
Disinfection of drinking water is the most successful measure to reduce water-borne diseases and protect health. However, disinfection byproducts (DBPs) formed from the reaction of disinfectants such as chlorine and monochloramine with organic matter may cause bladder cancer and other adverse health effects. In this study the formation of DBPs through a full-scale water treatment plant serving a metropolitan area in Australia was assessed using in vitro bioanalytical tools, as well as through quantification of halogen-specific adsorbable organic halogens (AOXs), characterization of organic matter, and analytical quantification of selected regulated and emerging DBPs. The water treatment train consisted of coagulation, sand filtration, chlorination, addition of lime and fluoride, storage, and chloramination. Nonspecific toxicity peaked midway through the treatment train after the chlorination and storage steps. The dissolved organic matter concentration decreased after the coagulation step and then essentially remained constant during the treatment train. Concentrations of AOXs increased upon initial chlorination and continued to increase through the plant, probably due to increased chlorine contact time. Most of the quantified DBPs followed a trend similar to that of AOXs, with maximum concentrations observed in the final treated water after chloramination. The mostly chlorinated and brominated DBPs formed during treatment also caused reactive toxicity to increase after chlorination. Both genotoxicity with and without metabolic activation and the induction of the oxidative stress response pathway showed the same pattern as the nonspecific toxicity, with a maximum activity midway through the treatment train. Although measured effects cannot be directly translated to adverse health outcomes, this study demonstrates the applicability of bioanalytical tools to investigate DBP formation in a drinking water treatment plant, despite bioassays and sample preparation not yet being optimized for volatile DBPs. As such, the bioassays are useful as monitoring tools as they provide sensitive responses even at low DBP levels.  相似文献   

14.
Process wash water and washed products from three different fresh produce processing lines were characterized at commercial scale. Different physicochemical and microbiological characteristics of wash water were measured. Great variability between processing lines on the physicochemical quality of process wash water was observed, caused in part by the type of produce washed. The relationship between lower aerobic mesophilic bacteria and higher free chlorine (FC) concentrations in wash water was detected (Pearson's correlation coefficient (PCC) = −0.53). Independently of the FC concentration, most of the water samples (>80%) showed presence of cultivable (limit of detection 1 CFU/100 mL), probably caused by the uncontrolled pH conditions. Higher values of FC and oxidation-reduction potential (ORP) in wash water were related to lower microbial load in washed produce (PCC = −0.82, and − 0.79, respectively). Higher concentration of chlorine was linked to a higher presence of disinfection by-products (DBPs) in the wash water, and washing in chlorinated water led to a significant increase in the concentration of DBPs in produce. However, the accumulation of trihalomethanes (THMs) in process wash water was not correlated with higher concentrations of these DBPs in produce.Industrial relevanceThe washing step of fresh produce processing lines is a critical process. The dose of disinfectants needs to be adequately optimized to avoid microbial contamination without generating the accumulation of disinfection by-products (DBPs). In this study, critical parameters that influence the efficacy of water disinfection and the occurrence of DBPs in fresh produce processing lines were identified under commercial conditions. The results evidenced that monitoring and control of pH play a critical role by maximizing the concentration of the most active form of chlorine in the water. The parameter UV254 measured on-line in the washing tank, can be suggested as a suitable indicator of the presence of organic matter in fresh produce wash water.  相似文献   

15.
Clinical studies have documented the promotion of respiratory ailments (e.g., asthma) among swimmers, especially in indoor swimming pools. Most studies of this behavior have identified trichloramine (NCl3) as the causative agent for these respiratory ailments; however, the analytical methods employed in these studies were not suited for identification or quantification of other volatile disinfection byproducts (DPBs) that could also contribute to this process. To address this issue, volatile DBP formation resulting from the chlorination of four model compounds (creatinine, urea, L-histidine, and L-arginine) was investigated over a range of chlorine/precursor (Cl/P) molar ratios. Trichloramine was observed to result from chlorination of all four model organic-nitrogen compounds. In addition to trichloramine, dichloromethylamine (CH3NCl2) was detected in the chlorination of creatinine, while cyanogen chloride (CNCl) and dichoroacetonitrile (CNCHCl2) were identified in the chlorination of L-histidine. Roughly 0.1 mg/L (as Cl2) NCl3, 0.01 mg/L CNCHCl2, and 0.01 mg/L CH3NCl2 were also observed in actual swimming pool water samples. DPD/FAS titration and MIMS (membrane introduction mass spectrometry) were both employed to measure residual chlorine and DBPs. The combined application of these methods allowed for identification of sources of interference in the conventional method (DPD/FAS), as well as structural information about the volatile DBPs that formed. The analysis by MIMS clearly indicates that volatile DBP formation in swimming pools is not limited to inorganic chloramines and haloforms. Additional experimentation allowed for the identification of possible reaction pathways to describe the formation of these DBPs from the precursor compounds used in this study.  相似文献   

16.
Chlorine is widely used for disinfecting public swimming pool water. The disinfectant chlorine, protecting swimmers from pathogenic infection in swimming, may be responsible for some adverse effects on swimmers' skin and health. In this study, numerous new halogenated disinfection byproducts (DBPs) in chlorinated pool water were detected with a powerful precursor ion scan method using electrospray ionization triple quadrupole mass spectrometry, with or without preseparation with ultra performance liquid chromatography. These new pool DBPs were demonstrated to be mainly halo(nitro)phenols, resulting from chlorination of human body substances (such as urine) in the presence of bromide. Among these new DBPs, 2,4-dibromophenol, 2,4-dichlorophenol, 2-bromophenol, 2,6-dibromo-4-nitrophenol, 2-bromo-6-chloro-4-nitrophenol, and 2,6-dichloro-4-nitrophenol were fully identified or confirmed. For 2,4-dibromophenol, 2,4-dichlorophenol and 2-bromophenol with pure standard compounds available, their permeability values across human skin were measured to be 0.031, 0.021, and 0.023 cm/h, respectively. The effects of chlorine on human skin were also investigated. The interaction of chlorine with epidermis was found to generate many new halogenated DBPs as well as common DBPs; the corneous layer was observed to become rough and even form larger pores after chlorine interaction. It is recommended that swimmers should avoid urinating in pools, and avoid prolonged swimming to reduce chlorine contact and prevent accelerated permeation of DBPs across skin.  相似文献   

17.
Chlorinated disinfection byproducts (DBPs) generated from the reaction of the disinfectant chlorine with naturally occurring humic substances in raw water have been intensively studied over the past three decades, yet only a fraction of the total organic halogen (TOX) formed during chlorination has been chemically identified or even well characterized. The majority of the unknown portion of the TOX is likely attributable to high molecular weight (MW) DBPs (above 500), which may have potential adverse health effects. In this work, typically dosed chlorinated Suwannee River fulvic acid (SRFA) samples with and without coagulation pretreatment were separated and fractionated by using ultrafiltration (UF) and size exclusion chromatography (SEC) techniques. The SEC fractions corresponding to the high MW region were concentrated with nitrogen sparging and characterized by negative ion electrospray ionization mass spectrometry (ESI-MS) and ESI-MS/MS. The results demonstrate that the ESI-MS/MS precursor ion scan is an effective tool for the selective detection of the electrospray ionizable chlorine-containing compounds in a complex mixture. Many high MW chlorine-containing DBPs were tentatively found in the UF-SEC fractions of the chlorinated SRFA samples with/without coagulation pretreatment. The SEC-UV chromatograms and SEC-ESI-MS spectra show that coagulation could significantly reduce the formation of high MW chlorinated DBPs.  相似文献   

18.
Using gas chromatography/mass spectrometry (GC/MS), we investigated the formation of disinfection byproducts (DBPs) from high bromide waters (2 mg/L) treated with chlorine or chlorine dioxide used in combination with chlorine and chloramines. This study represents the first comprehensive investigation of DBPs formed by chlorine dioxide under high bromide conditions. Drinking water from full-scale treatment plants in Israel was studied, along with source water (Sea of Galilee) treated under carefully controlled laboratory conditions. Select DBPs (trihalomethanes, haloacetic acids, aldehydes, chlorite, chlorate, and bromate) were quantified. Many of the DBPs identified have not been previously reported, and several of the identifications were confirmed through the analysis of authentic standards. Elevated bromide levels in the source water caused a significant shift in speciation to bromine-containing DBPs; bromoform and dibromoacetic acid were the dominant DBPs observed, with very few chlorine-containing compounds found. Iodo-trihalomethanes were also identified, as well as a number of new brominated carboxylic acids and 2,3,5-tribromopyrrole, which represents the first time a halogenated pyrrole has been reported as a DBP. Most of the bromine-containing DBPs were formed during pre-chlorination at the initial reservoir, and were not formed by chlorine dioxide itself. An exception wasthe iodo-THMs, which appeared to be formed by a combination of chlorine dioxide with chloramines or chlorine (either added deliberately or as an impurity in the chlorine dioxide). A separate laboratory study was also conducted to quantitatively determine the contribution of fulvic acids and humic acids (from isolated natural organic matter in the Sea of Galilee) as precursor material to several of the DBPs identified. Results showed that fulvic acid plays a greater role in the formation of THMs, haloacetic acids, and aldehydes, but 2,3,5-tribromopyrrole was produced primarily from humic acid. Because this was the first time a halopyrrole has been identified as a DBP, 2,3,5-tribromopyrrole was tested for mammalian cell cytotoxicity and genotoxicity. In comparison to other DBPs, 2,3,5-tribromopyrrole was 8x, 4.5x, and 16x more cytotoxic than dibromoacetic acid, 3-chloro-4-(dichloromethyl)-5-hydroxy-2-[5H]-furanone [MX], and potassium bromate, respectively. 2,3,5-Tribromopyrrole also induced acute genomic damage, with a genotoxic potency (299 microM) similar to that of MX.  相似文献   

19.
Aquatic humic substances react with chlorine to produce numerous disinfection byproducts (DBPs) during chlorination of drinking water. Although low molecular weight (MW) chlorinated DBPs have been intensively studied over the past several decades, relatively little is known about high MW chlorinated DBPs (above 500 Da) that may be associated with adverse health implications. In this work, carrier-free radioactive 36Cl was introduced into a Suwannee River fulvic acid sample to label the chlorine-containing DBPs. By combining the fractionation techniques of ultrafiltration (UF) and size exclusion chromatography (SEC) with the detection of 36Cl, UV, and dissolved organic carbon (DOC), the high MW region in the SEC-36Cl profiles of the chlorinated sample with and without UF was defined. SEC-UV and SEC-DOC profiles were found to be approximately indicative of SEC-36Cl profiles for the high MW region. The MW distribution shows that the high MW chlorinated DBPs were highly dispersed with an average MW around 2000 Da based on calibration with polystyrene sulfonate standards. The Cl/C atomic ratios of the high MW DBPs were roughly constant (0.025), which is much lower than those of the common known chlorinated DBPs.  相似文献   

20.
Due to their efficacy in deactivating a range of microbial pathogens, particularly amoebic cysts, iodine-based disinfectants have been a popular option for point-of-use (POU) drinking water disinfection by campers, the military, and rural consumers in developing countries. Recently, concerns regarding the formation of cytotoxic and genotoxic iodinated disinfection byproducts (I-DBPs) have arisen during chloramine disinfection of iodide-containing waters in the developed world; similar concerns should pertain to iodine-based POU disinfection. Because there are alternative POU disinfection techniques, including chlorine-based disinfectants, this paper compared disinfection byproduct formation from a range of iodine-based disinfectants at their recommended dosages to chlorination and chloramination under overdosing conditions. Just as chloroform was the predominant trihalomethane (THM) forme during chlorination or chloramination, iodoform was the predominant THM formed during iodination. Conditions fostering THM formation were similar between these treatments, except that THM formation during chlorination increased with pH, while it was slightly elevated at circumneutral pH during iodination. Iodoform formation during treatment with iodine tincture was higher than during treatment with iodine tablets. On a molar basis, iodoform formation during treatment with iodine tincture was 20-60% of the formation of chloroform during chlorination, and total organic iodine (TOI) formation was twice that of total organic chlorine (TOCl), despite the 6-fold higher oxidant dose during chlorination. Based upon previous measurements of chronic mammalian cell cytotoxicity for the individual THMs, consumers of two waters treated with iodine tincture would receive the same THM-associated cytotoxic exposure in 4-19 days as a consumer of the same waters treated with a 6-fold higher dose of chlorine over 1 year. Iodoacetic acid, diiodoacetic acid, and other iodo-acids were also formed with iodine tincture treatment, but at levels <11% of iodoform. However, testing of a Lifestraw Personal POU device, which combines an iodinated anion exchange resin with activated carbon post-treatment, indicated minimal formation of I-DBPs and no iodine residual. Although N-nitrosamines have been associated with oxidant contact with anion exchange resins, N-nitrosamine formation rapidly declined to low levels (4 ng/L) using the Lifestraw device after the first few flushes of water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号