共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
目的 车型识别在智能交通、智慧安防、自动驾驶等领域具有十分重要的应用前景。而车型识别中,带标签车型数据的数量是影响车型识别的重要因素。本文以"增强数据"为核心,结合PGGAN(progressive growing of GANs)和Attention机制,提出一种基于对抗网络生成数据再分类的网络模型AT-PGGAN(attention-progressive growing of GANs),采用模型生成带标签车型图像的数量,从而提高车型识别准确率。方法 该模型由生成网络和分类网络组成,利用生成网络对训练数据进行增强扩充,利用注意力机制和标签重嵌入方法对生成网络进行优化使其生成图像细节更加完善,提出标签重标定的方法重新确定生成图像的标签数据,并对生成图像进行相应的筛选。使用扩充的图像加上原有数据集的图像作为输入训练分类网络。结果 本文模型能够很好地扩充已有的车辆图像,在公开数据集StanfordCars上,其识别准确率相比未使用AT-PGGAN模型进行数据扩充的分类网络均有1%以上的提升,在CompCars上与其他网络进行对比,本文方法在同等条件下最高准确率达到96.6%,高于对比方法。实验结果表明该方法能有效提高车辆精细识别的准确率。结论 将生成对抗网络用于对数据的扩充增强,生成图像能够很好地模拟原图像数据,对原图像数据具有正则的作用,图像数据可以使图像的细粒度识别准确率获得一定的提升,具有较大的应用前景。 相似文献
3.
针对脑电信号(electroencephalogram,EEG)情绪识别中数据稀缺及由此导致的情感分类精度不高的问题,提出了一个引入自注意力机制的条件Wasserstein生成对抗网络(SA-cWGAN),通过自注意力模块从训练数据学习长时上下文相关的全局特征,采用Wasserstein距离和梯度惩罚的Lipschitz约束对网络的损失函数进行优化,进而生成高质量的EEG数据对原有训练集进行增强。所提方法分别在DEAP和SEED数据集上进行了大量的二分类和三分类对比实验,生成了与EEG训练数据分布接近的微分熵(DE)和功率谱密度(PSD)特征,以此来增强EEG训练数据集,采用SVM分类器对增强后的EEG特征进行情绪分类。实验结果表明,在DEAP数据集上的唤醒度和效价维度下,增强后的DE、PSD特征较原有DE、PSD特征二分类准确率分别提高了16.63、17.55个百分点和6.48、8.34个百分点;在SEED数据集下,三分类准确率分别提高了4.64、5.18个百分点,证明所提方法生成的特征具有良好的鲁棒性,也表明通过对GAN网络引入自注意力机制生成的特征增强原有训练数据集能够有效提高E... 相似文献
4.
端到端的CNN-LSTM模型利用卷积神经网络(Convolutional Neural Network, CNN)提取图像的空间特征,利用长短期记忆网络LSTM提取视频帧间的时间特征,在视频表情识别中得到了广泛的应用。但在学习视频帧的分层表示时,CNN-LSTM模型复杂度较高,且易发生过拟合。针对这些问题,提出一个高效、低复杂度的视频表情识别模型ECNN-SA (Enhanced Convolutional Neural Network with Self-Attention)。首先,将视频分成若干视频段,采用带增强特征分支的卷积神经网络和全局平均池化层提取视频段中每帧图像的特征向量。其次,利用自注意力(Self-Attention)机制获得特征向量间的相关性,根据相关性构建权值向量,主要关注视频段中的表情变化关键帧,引导分类器给出更准确的分类结果。最终,该模型在CK+和AFEW数据集上的实验结果表明,自注意力模块使得模型主要关注时间序列中表情变化的关键帧,相比于单层和多层的LSTM网络,ECNN-SA模型能更有效地对视频序列的情感信息进行分类识别。 相似文献
5.
针对真实环境中非重叠多摄像头的行人重识别受到不同摄像机场景、视角、光照等因素的影响导致行人重识别精度低的问题,提出一种基于注意力机制的行人重识别特征提取方法。首先,使用随机擦除法对输入的行人图像进行数据增强,提高网络的鲁棒性;然后,通过构建自上而下的注意力机制网络增强空间像素特征的显著性,并将注意力机制网络嵌入ResNet50网络提取整个行人的显著特征;最后,将整个行人的显著特征进行相似性度量并排序得到行人重识别的结果。该注意力机制的行人重识别特征提取方法在Market1501数据集上Rank1达到88.53%,平均精度均值(mAP)为70.70%;在DukeMTMC-reID数据集上Rank1达到77.33%,mAP为59.47%。所提方法在两大行人重识别数据集上性能都有明显提升,具有一定的应用价值。 相似文献
6.
李杰 《计算机科学与探索》2022,16(3):661-668
针对现有行人再识别算法在处理图像分辨率低、光照差异、姿态和视角多样等情况时,准确率低的问题,提出了基于空间注意力和纹理特征增强的多任务行人再识别算法.算法设计的空间注意力模块更注重与行人属性相关的潜在图像区域,融入属性识别网络,实现属性特征的挖掘;提出的行人再识别网络的纹理特征增强模块通过融合不同空间级别所对应的全局和... 相似文献
7.
针对交通标志识别模型检测速度与识别精度不均衡,以及受遮挡目标和小目标难以检测的问题,对YOLOv5模型进行改进,提出一种基于坐标注意力(CA)的轻量级交通标志识别模型。首先,通过在主干网络中融入CA机制,有效地捕获位置信息和通道之间的关系,从而更准确地获取感兴趣区域,避免过多的计算开销;然后,通过在特征融合网络中加入跨层连接,在不增加成本的情况下融合更多的特征信息,提高网络的特征提取能力,并改善对遮挡目标的检测效果;最后,引入改进的CIoU函数计算定位损失,以缓解检测过程中样本尺寸分布不均衡的现象,并进一步提高对小目标的识别精度。在TT100K数据集上应用所提模型时,识别精度达到了91.5%,召回率达到了86.64%,与传统的YOLOv5n模型相比分别提高了20.96%和11.62%,且帧处理速率达到了140.84 FPS。实验结果比较充分地验证了所提模型在真实场景中对交通标志检测与识别的准确性与实时性。 相似文献
8.
基于模式匹配算法的车型识别研究 总被引:4,自引:0,他引:4
利用车辆通过地球磁场时对地磁的影响可以检测出车辆的存在和行驶方向,还可以根据不同车辆对地磁的不同影响可以识别出车辆的类型,本文介绍了常用的两种模式识别的匹配算法;距离测度法和近似度测度法,并把它们应用于基于地磁传感器的车型识别系统中。 相似文献
9.
针对细粒度车型识别率低,车型区别主要集中在鉴别性部件上以及深度学习不能有效对部件进行关注的问题,提出一种基于部件关注DenseNet(part-focused DenseNet, PF-DenseNet)的细粒度车型识别模型。该模型可以基于细粒度车型的车灯、车标等区分性部件进行有效分类,通过处理层(process layer)对车型部件信息反复加强提取并进行最大池化下采样,获取更多的车型部件信息,然后通过密集卷积对特征通道进一步复用提取,密集卷积前嵌入独立组件(independent component, IC)层,获得相对独立的神经元,增强网络独立性,提高模型的收敛极限。实验结果表明,该模型在Stanford cars-196数据集上的识别准确率、查全率和F1分别达到95.0%、94.9%和94.8%,高于经典卷积神经网络,并具有较小的参数量,与其他方法相比实现了最高准确率,验证了该车型识别模型的有效性。 相似文献
10.
基于字词联合的中文命名实体识别模型能够兼顾字符级别与词语级别的信息,但受未登录词影响较大且在小规模数据集上存在训练不充分等问题。在现有LR-CNN模型的基础上,提出一种结合知识增强的中文命名实体识别模型,采用相对位置编码的多头注意力机制提高模型上下文信息捕捉能力,通过实体词典融入先验知识降低未登录词的影响并增强模型学习能力。实验结果表明,该模型在保持较快解码速度和较低计算资源占用量的情况下,在MSRA、People Daily、Resume、Weibo数据集上相比SoftLexicon、FLAT等模型F1值均有明显提升,同时具有较强的鲁棒性和泛化能力。 相似文献
11.
人名识别常被作为命名实体识别任务的一部分,与其他类型的实体同时进行识别。当前使用NER方法的人名识别依赖于训练语料对特定类型人名的覆盖,在遇到新类型人名时性能显著下降。针对上述问题,该文提出了一种基于数据增强(data augmentation)的方法,使用新类型人名实体替换的策略来生成伪训练数据,该方法能够有效提升系统对新类型人名的识别性能。为了选择有代表性的特定类型人名实体,该文提出了贪心的代表性子类型人名选择算法。在使用1998年《人民日报》数据自动生成的伪测试数据和人工标注的新闻数据的测试结果中,多个模型上人名识别的F1值分别提升了至少12个百分点和6个百分点。 相似文献
12.
13.
针对复杂背景下的目标车型识别问题,提出一种基于视频序列的检测识别算法。运用帧差序列图像进行背景建模与更新,采用背景差分和LBP纹理分析法进行运动车辆的分割及阴影消除,提出车辆形状投影量的概念,将视频车辆二维形状信息降至一维,并设计二维输入模糊分类器,根据形状投影量和车高/车长比,完成车型的多种类精细识别。实验结果验证了该算法的有效性。 相似文献
14.
精准识别作物害虫对作物进行适时地防护和治理具有重要意义. 在面向自然环境时, 由于作物害虫体积小、与环境颜色的差异性不大, 同时又面临着各种噪声和复杂背景等因素的影响, 目前与深度学习相关的作物害虫识别模型存在难以兼顾识别准确率和鲁棒性的要求, 难以部署在计算资源有限和低性能的移动端等缺陷. 因此选取ShuffleNetV2网络结构中模型参数最少的ShuffleNetV2 0.5×为基准网络, 设计了一个基于高阶残差和注意力机制的轻量型作物害虫识别模型(HOR-Shuffle-CANet). 其中, 前期的高阶残差可以为后面的网络层提供丰富的害虫特征, 有效提高模型的识别准确率; 坐标注意力(coordinate attention, CA)机制能够进一步抑制背景噪声和对作物害虫重点信息的关注, 有效增强模型的鲁棒性; 带标签平滑正则化(label smoothing regularization, LSR)的双稳态逻辑损失函数可以解决训练含噪数据集时逻辑损失函数的两个缺点, 使得模型对噪声的适应能力更强. 试验结果表明, HOR-Shuffle-CANet模型在自然场景中10类常见作物害虫图像的测试数据集上达到了91.22%的识别准确率, 较基准网络提升了3.54个百分点. 在保持轻量化计算的基础上, 其识别准确率也高于现有的经典卷积神经网络AlexNet、VGG-16、GoogLeNet、Xception、ResNet-34和轻量级网络模型MobileNetV3-Small、EfficientNet-B0等. 该模型具有识别准确率高、鲁棒性强和抗干扰性能好等特点, 能够很好地适应作物害虫识别的实际应用需求. 相似文献
15.
基于深度学习的方法已经在人脸表情识别中取得了重大进展,然而人脸表情数据库的规模普遍不大。为了解决数据量不足的问题,提出了一种静态图像数据增强方法。在StarGAN的基础上修改重构误差实现多风格人脸表情图像转换,利用生成器由某一表情下的面部图像生成同一人其他表情的面部图像。在CK+表情库上的实验表明,该方法有利于提高人脸表情识别模型的识别率和泛化能力,同时对解决数据量不平衡的问题也有借鉴作用。 相似文献
16.
车型识别具有广阔的应用前景,BP神经网络在车型识别中能够提高车型的识别率。在任何车型大致都可以抽象成一个"工"字型情况下,提取其中的顶长比、前后比和顶高比这三项相对参数作为BP神经网络的输入参数。采用三层3-8-3的BP神经网络,并用14对输入参数离线训练,再用4对新数据进行检验,均得到了预想的期望值。 相似文献
17.
针对车型识别任务的特点,设计了一种基于深度哈希网络的车型识别方法,实现了在类间差异不明显、样本量较少的情况下进行车型检索和分类。对数据增广方法进行研究,针对车型数据集的特点,提出了适用于车型识别的数据增广方法,有效提升了小样本车型识别的准确率。深度哈希网络采用改进的HashNet网络来快速学习车辆的二值特征表达,针对深度哈希网络使用全连接层导致参数过多的问题,提出了HashNet-GAP网络,以全局平均池化层替换了HashNet中的部分全连接层。相对于HashNet网络,大幅度减少了参数数量,提升了前向计算速度和网络性能。实验结果表明,该车型识别方法能够对类间差距很小的不同车型进行有效识别,在小样本数据集上取得80.0%的Top1准确率,并且能够显著降低模型的存储消耗和内存消耗。 相似文献
18.
车辆车型识别技术在智能交通系统中至关重要,现有的车辆车型识别技术难以兼顾识别精度和识别速度。针对高速公路环境下的车型识别问题,提出了浅层特征层与宽度特征层相结合的分层式宽度模型实时进行车型识别。首先利用颜色空间转换和多通道HOG算法相结合,减少光照环境的影响,同时实现对车辆图像的特征提取,结合PCA降维技术,降低计算复杂度;然后对图像特征进行稀疏表示和非线性映射,减少图像特征之间的相关性;最后用岭回归学习算法对提取的样本特征进行训练,求出样本特征与样本标签之间的权重系数,实现对车辆车型的识别。在BIT-Vehicle车型数据库的实验结果表明,本文所提算法的识别精度为96.69%,识别速度高达70.3帧/s。本文算法在提高车型识别精度的同时保证了实时性,在识别精度和速度方面优于其他算法。 相似文献
19.
模式是事物的本质,特征只是事物的表象,模式识别的任务就是要建立事物本质和表象之间的联系,传统模式识别是通过分类器建立这样的联系,模式识别的效率依赖于特征提取和选择。该文基于信息增益,通过动力学系统演化方程建立事物本质和表象之间的联系,该过程更符合人的认知过程。 相似文献