首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
在高考语文阅读理解中,观点类问题中的观点表达较为抽象,为了从阅读材料中获取与问题相关的答案信息,需要对问题中的抽象词语进行扩展,达到扩展观点类问题的目的。该文提出了基于多任务层级长短时记忆网络(Multi-HLSTM)的问题扩展建模方法。首先将阅读材料与问题进行交互注意,同时建模问题预测和答案预测两个任务,使模型对问题进一步扩展。最后将扩展后的问题与原问题同时应用于问题的答案候选句抽取中。通过在高考语文观点类的真题、模拟题以及DuReader的描述观点类数据集上进行实验,验证了本文的问题扩展模型对答案候选句的抽取性能具有一定的提升作用。  相似文献   

2.
机器阅读理解是自然语言处理(NLP)领域的一个研究热点,目前大部分的研究是针对答案简短的问题,而具有长答案的问题,如描述类问题是现实世界无法避免的,因此有必要对该类问题进行研究。该文采用QU-NNs模型对阅读理解中描述类问题的解答进行了探索,其框架为嵌入层、编码层、交互层、预测层和答案后处理层。由于该类问题语义概括程度高,所以对问题的理解尤为重要,该文在模型的嵌入层和交互层中分别融入了问题类型和问题主题、问题焦点这三种问题特征,其中问题类型通过卷积神经网络进行识别,问题主题和问题焦点通过句法分析获得,同时采用启发式方法对答案中的噪音和冗余信息进行了识别。在相关数据集上对QU-NNs(Question Understanding-Neural Networks)模型进行了实验,实验表明加入问题特征和删除无关信息可使结果提高2%~10%。  相似文献   

3.
高考语文阅读理解问答相对普通阅读理解问答难度更大,同时高考问答任务中的训练数据较少,目前的深度学习方法不能取得良好的答题效果。针对这些问题,该文提出融合BERT语义表示的高考阅读理解答案候选句抽取方法。首先,采用改进的MMR算法对段落进行筛选;其次,运用微调之后的BERT模型对句子进行语义表示;再次,通过SoftMax分类器对答案候选句进行抽取,最后利用PageRank排序算法对输出结果进行二次排序。该方法在北京近十年高考语文阅读理解问答题上的召回率和准确率分别达到了61.2%和50.1%,验证了该方法的有效性。  相似文献   

4.
机器阅读理解是自然语言处理中的一项重要而富有挑战性的任务.近年来,以BERT为代表的大规模预训练语言模型在此领域取得了显著的成功.但是,受限于序列模型的结构和规模,基于BERT的阅读理解模型在长距离和全局语义构建的能力有着显著缺陷,影响了其在阅读理解任务上的表现.针对这一问题,该文提出一种融合了序列和图结构的机器阅读理...  相似文献   

5.
阅读理解是目前NLP领域的一个研究热点。阅读理解中好的复杂问题解答策略不仅要进行答案句的抽取,还要对答案句进行融合、生成相应的答案,但是目前的研究大多集中在前者。该文针对复杂问题解答中的句子融合进行研究,提出了一种兼顾句子重要信息、问题关联度与句子流畅度的句子融合方法。该方法的主要思想为: 首先,基于句子拆分和词重要度选择待融合部分;然后,基于词对齐进行句子相同信息的合并;最后,利用基于依存关系、二元语言模型及词重要度的整数线性规划优化生成句子。在历年高考阅读理解数据集上的测试结果表明,该方法取得了82.62%的F值,同时更好地保证了结果的可读性及信息量。  相似文献   

6.
孙雷 《计算机应用研究》2022,39(3):726-731+738
基于阅读理解的智能问答是指同人类一样首先让模型阅读理解相关文本,然后根据模型获取的文本信息来回答对应问题。预训练模型RoBERTa-wwm-ext使用抽取原文片段作为问题的回答,但这种方法遇到原文中不存在的答案片段或需要对原文总结后回复这两种情况时不能很好解决,而使用预训练模型进行生成式模型训练,这种生成式回复在一定程度上解决了需要总结原文才能回答的问题。因此,改进了只采用RoBERTa-wwm-ext模型进行抽取答案的方式,在此基础上融合了基于RAG模型的生成式问答模型,用于回答RoBERTa-wwm-ext等抽取式模型无法处理的问题。同时,吸取了PGN模型的优点,对RAG模型进行改进得到RPGN子模型,可以更好地利用阅读理解的文章生成合理的答案。由此,提出RPR(RAG、PGN、RoBERTa-wwm-ext)的融合模型,用于同时处理抽取式问题任务和生成式问答任务。  相似文献   

7.
顾迎捷  桂小林  李德福  沈毅  廖东 《软件学报》2020,31(7):2095-2126
机器阅读理解的目标是使机器理解自然语言文本,并能够正确回答与文本相关的问题.由于数据集规模的制约,早期的机器阅读理解方法大多基于人工特征以及传统机器学习方法进行建模.近年来,随着知识库、众包群智的发展,研究者们陆续提出了高质量的大规模数据集,为神经网络模型以及机器阅读理解的发展带来了新的契机.对基于神经网络的机器阅读理解相关的最新研究成果进行了详尽的归纳:首先,概述了机器阅读理解的发展历程、问题描述以及评价指标;然后,针对当前最流行的神经阅读理解模型架构,包括嵌入层、编码层、交互层和输出层中所使用的相关技术进行了全面的综述,同时阐述了最新的BERT预训练模型及其优势;之后,归纳了近年来机器阅读理解数据集和神经阅读理解模型的研究进展,同时,详细比较分析了最具代表性的数据集以及神经网络模型;最后展望了机器阅读理解研究所面临的挑战和未来的研究方向.  相似文献   

8.
融合对抗学习的因果关系抽取   总被引:2,自引:0,他引:2  
因果关系抽取在事件预测、情景生成、问答以及文本蕴涵等任务上都有重要的应用价值.但多数现有的因果关系抽取方法都需要人工定义模式和约束,且严重依赖知识库.为此,本文利用生成式对抗网络(Generative adversarial networks,GAN)的对抗学习特性,将带注意力机制的双向门控循环单元神经网络(Bidirectional gated recurrent units networks,BGRU)与对抗学习相融合,通过重定义生成模型和判别模型,基本的因果关系抽取网络能够与判别网络形成对抗,进而从因果关系解释信息中获得高区分度的特征.实验结果表明,与当前用于因果关系抽取的方法相比较,该方法表现出更优的抽取效果.  相似文献   

9.
以往机器阅读理解模型中存在文本特征提取单一, 文本和问题的交互信息不全面等问题, 导致模型不能充分对文本进行理解, 本文提出了一种多层次信息融合的机器阅读理解模型. 通过在不同位置使用不同方法, 对文本信息进行多种层次的获取. 使用膨胀卷积网络捕捉文本的全局信息, 采用双向注意力机制和自注意力机制融合文本和问题之间的交互信息, 通过指针网络预测答案及其对应的支撑句. 该模型在CAIL2019和CAIL2020阅读理解数据集上训练的联合F1值分别达到50.09%和58.44%, 相比于其他基线模型取得了明显的性能提升.  相似文献   

10.
为了改善传统基于阅读理解的命名实体识别方法存在的缺陷,提出一种基于注意力的阅读理解实体识别方法。该方法首先通过来自变换器的双向编码器表征量(Bidirectional Encoder Representations from Transformers,BERT)模型对实体类型的问题语句和待处理的文本进行编码,其次使用注意力网络关联二者,最后通过Span网络进行序列解码,提取出相应的实体类型。实验结果表明,该方法的F1值大于对照组的F1值,能够更准确地判断实体类型。  相似文献   

11.
机器阅读理解是自然语言处理领域中的一项重要研究任务,高考阅读理解自动答题是近年来阅读理解任务中的又一挑战。目前高考语文阅读理解任务中真题和模拟题的数量相对较少,基于深度学习的方法受到实验数据规模较小的限制,所得的实验结果相比传统方法无明显优势。基于此,该文探索了面向高考语文阅读理解的数据增强方法,结合传统的EDA数据增强思路提出了适应于高考阅读理解的EDA策略,针对阅读材料普遍较长的特征提出了基于滑动窗口的材料动态裁剪方式,围绕材料中不同句子的重要性差异明显的问题,提出了基于相似度计算的材料句质量评价方法。实验结果表明,三种方法均能提升高考题阅读理解自动答题的效果,答题准确率最高可提升5个百分点以上。  相似文献   

12.
阅读理解指的是基于给定文章自动回答相关问题,这是人工智能及自然语言处理领域的一个研究热点。目前已提出许多基于深度学习的阅读理解方法,但是这些方法对问题理解及篇章建模不充分,导致模型获取答案准确率不高。为了解决上述问题,该文提出一个基于外部知识和层级篇章表示的阅读理解方法。该方法特点有: ①通过引入问题重要词的字典释义、HowNet义原,并结合问题类型,加强问题理解; ②使用层级篇章表示,提升模型对篇章的理解; ③在一个框架下联合优化问题类型预测与答案预测两个子任务。在DuReader数据集上的实验结果表明,该方法与基线系统性能相比最大提升了8.2%。  相似文献   

13.
高考语文阅读理解篇章标题选择题要求机器根据对篇章内容的理解,从多个候选项中选取能够准确恰当的概括表达篇章内容的选项。标题往往是高度凝练且能准确表达文意、结构鲜明的词串。因此,如何对篇章内容进行归纳概括、对标题结构进行梳理和分析是解答篇章标题选择题的关键。针对该问题,提出了标题与篇章要点相关性分析模型。该模型通过分析标题与篇章要点的相关性,构建了基于标题和篇章要点的相关度矩阵。在此基础上融入标题结构特征,选取与篇章最相关的标题。在全国近10年高考真题和测试题上进行实验,验证了该方法的有效性。  相似文献   

14.
谭红叶  武宇飞 《计算机科学》2018,45(Z6):72-74, 90
阅读理解任务是在给定的单篇文本上,要求计算机根据文本的内容对相应的问题作出回答。以北京语文高考阅读理解为背景,对其中的词义判断题进行了分析与研究,提出了一个基于支持度计算的解答框架,并尝试使用语言模型、点互信息与句子相似度3种方法来计算支持度。通过实验验证,3种方法在真实数据集和自动构造的数据集上均有一定成效。其中,基于点互信息的支持度计算方法在真实数据集上表现最好,获得了75%的选项正确率。  相似文献   

15.
机器阅读理解任务一直是自然语言处理领域的重要问题。2018机器阅读理解技术竞赛提供了一个基于真实场景的大规模中文阅读理解数据集,对中文阅读理解系统提出了很大的挑战。为了应对这些挑战,我们在数据预处理、特征表示、模型选择、损失函数的设定和训练目标的选择等方面基于以往的工作做出了对应的设计和改进,构建出一个最先进的中文阅读理解系统。我们的系统在正式测试集ROUGE-L和BLEU-4上分别达到了63.38和59.23,在105支提交最终结果的队伍里面取得了第一名。  相似文献   

16.
机器阅读理解是自然语言处理和人工智能领域的重要前沿课题,近年来受到学术界和工业界的广泛关注。为了提升机器阅读理解系统在多文档中文数据集上的处理能力,我们提出了N-Reader,一个基于神经网络的端到端机器阅读理解模型。该模型的主要特点是采用双层self-attention机制对单个文档以及所有输入文档进行编码。通过这样的编码,不仅可以获取单篇文档中的关键信息,还可以利用多篇文档中的相似性信息。另外,我们还提出了一种多相关段落补全算法来对输入文档进行数据预处理。这种补全算法可以帮助模型识别出具有相关语义的段落,进而预测出更好的答案序列。使用N-Reader模型,我们参加了由中国中文信息学会、中国计算机学会和百度公司联手举办的“2018机器阅读理解技术竞赛”,取得了第3名的成绩。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号