首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
提出一种输出低于1V的、无电阻高电源抑制比的CMOS带隙基准源(BGR).该电路适用于片上电源转换器.用HJTC0.18μm CMOS工艺设计并流片实现了该带隙基准源,芯片面积(不包括pad和静电保护电路)为0.031mm2.测试结果表明,采用前调制器结构,带隙基准源电路的输出在100Hz与lkHz处分别获得了-70与-62dB的高电源抑制比.电路输出一个0.5582V的稳定参考电压,当温度在0~85℃范围内变化时,输出电压的变化仅为1.5mV.电源电压VDD在2.4~4V范围内变化时,带隙基准输出电压的变化不超过2mV.  相似文献   

2.
提出一种输出低于1V的、无电阻高电源抑制比的CMOS带隙基准源(BGR).该电路适用于片上电源转换器.用HJTC0.18μm CMOS工艺设计并流片实现了该带隙基准源,芯片面积(不包括pad和静电保护电路)为0.031mm2.测试结果表明,采用前调制器结构,带隙基准源电路的输出在100Hz与lkHz处分别获得了-70与-62dB的高电源抑制比.电路输出一个0.5582V的稳定参考电压,当温度在0~85℃范围内变化时,输出电压的变化仅为1.5mV.电源电压VDD在2.4~4V范围内变化时,带隙基准输出电压的变化不超过2mV.  相似文献   

3.
一种高电源抑制比带隙基准源   总被引:1,自引:0,他引:1  
介绍一种基于UMC0.6μmBCD工艺的低温漂高PSRR带隙电路。采用Brokaw带隙基准核结构,针对温度补偿和PSRR问题,通过改进的线性曲率补偿技术,对温度进行补偿;并利用零点技术提高电路的整体PSRR。HSPICE仿真分析表明:电路具有很好的高低频PSRR,在-40℃到125℃的温度范围内引入温度补偿后,温度系数降为3.7×10-6/℃。当电源电压从2.5V变化到5.5V时,带隙基准的输出电压变化约为670μV,最低工作电压仅为2.2V。  相似文献   

4.
根据带隙基准电压源理论,在传统CMOS带隙电压源电路结构的基础上,采用曲率补偿技术,对一阶温度补偿电路进行高阶补偿,获得了一种结构简单,电源抑制比和温度系数等性能都较好的带隙电压基准源.该电路采用CSMC 0.5 μm标准CMOS工艺实现,用Spectre进行仿真.结果表明,在3.3 V电源电压下,在-30 ℃~125 ℃范围内,温度系数为3.2×10-6 /℃;在27 ℃下,10 Hz时电源抑制比(PSRR)高达118 dB,1 kHz时(PSRR)达到86 dB.  相似文献   

5.
根据带隙基准的基本原理,结合含三条支路负反馈的电流源,设计了一种高阶补偿的带隙基准源电路。实现了对温度的2阶补偿和3阶补偿,获得了一种高电源抑制比、低温漂、不受电源变化影响的电压基准源。设计采用0.35μm CMOS工艺,仿真结果表明,在-40℃~125℃温度范围内,输出电压的温度系数为7.70×10-7/℃,在1kHz时,电源抑制比为-82.3dB。  相似文献   

6.
设计了一种用于DC-DC开关电源芯片的高电源抑制比、低温漂系数带隙基准电路。基于0.5μm BCD工艺,仿真结果表明,在不显著增加电路面积损耗的前提下,该电路的电源抑制比在低频下接近110dB,100kHz时约为50dB,1MHz时约为40dB;通过高温时的高阶温度补偿,0℃~100℃范围内的温度系数低于1.0×10-5/℃。此外,电流温度补偿的运用可有效地减小电流温度系数,从而使得芯片中的振荡器的频率输出更加稳定。  相似文献   

7.
高电源抑制比和高阶曲率补偿带隙电压基准源   总被引:1,自引:0,他引:1  
基于分段线性补偿原理,提出了一种新的带隙基准源高阶曲率补偿方法,使电压基准源的温度特性曲线在整个工作温度范围内具有多个极值,显著提高了电压基准源的精度.采用0.5μm CMOS工艺模型进行仿真.结果表明,在-40℃~135℃的温度范围内,电压基准源的温度系数为5.8×107/℃.设计了具有提高电源抑制比功能的误差放大器,在5V电源电压下,电压基准源的电源抑制比在低频时为-95.4dB,在1kHz时为-92.4dB.  相似文献   

8.
采用了两种方式提高了带隙基准电路的电源抑制比。首先,采用峰值电流源结构将三极管自身的增益引入反馈环路,从而提高了环路增益和带隙基准核心的电源抑制比。其次,运用预调制电路进一步提高了电源抑制比。此外,还提出了一种仅需源极负反馈非对称电流镜的曲率补偿电路,该电路具有跨工艺的通用性。所提出的电路采用0.18μm BCD工艺进行了验证,并应用在一款降压DC-DC变换器中。结果表明,所提出的电路在2.4V、3.3V和5V供电下,低频分别具有127dB、134dB和136dB的高电源抑制比,同时实现了3.74×10-6/℃的低温度系数,总电流消耗仅为6.3μA~14.5μA。  相似文献   

9.
10.
《电子与封装》2017,(12):30-33
提出了一种基于基极电流补偿的具有低温度系数和高电源抑制比的带隙基准电压源结构,通过消除三极管基极电流对基准输出电压温度系数的影响,有效降低了基准的温漂系数,同时通过自偏置电流镜结构和滤波电容提高了基准在全频段的电源抑制比(PSRR)。Cadence中利用TSMC 0.18μm工艺进行的仿真结果表明,在-55~125℃的温度范围内,得到9.1×10~(-6)/℃的温漂系数,低频时的电源抑制比达到-80 d B。  相似文献   

11.
在对传统典型CMOS带隙电压基准源电路分析基础上提出了一种高精度、高电源抑制带隙电压基准源。采用二阶曲率补偿技术,电路采用预电压调整电路,为基准电路提供稳定的电源,提高了电源抑制比,在提高精度的同时兼顾了电源抑制比,整个电路采用了CSMC0.5μm标准CMOS工艺实现,采用spectre进行进行仿真,仿真结果显示当温度为-40℃~80℃,输出基准电压变化小于1mV,温度系数为3.29×10-6℃,低频时(1kHz)的电源抑制比达到75dB,基准电路在高于3.3V电源电压下可以稳定工作,具有较好的性能。  相似文献   

12.
基于SMIC 0.18 μm CMOS工艺,设计了一种高电源抑制比(PSRR)、高阶温度补偿的带隙基准电压源(BGR)。在传统带隙基准电压源的基础上,增加了一个温度分段曲率补偿电路以及一个ΔVGS温度补偿电路,使得该BGR的温度特性得到有效改善。采用前调整器技术,使得该BGR获得高PSRR特性。仿真结果表明,当温度在-55 ℃~125 ℃范围变化时,该BGR的温度系数为8.1×10-7/℃,在10 Hz、100 Hz、1 kHz、10 kHz、100 kHz频率处的PSRR分别为-90.15、-90.13、-89.83、-81.15、-58.78 dB。  相似文献   

13.
一种低工艺敏感度,高PSRR带隙基准源   总被引:1,自引:2,他引:1  
实现了一种高精度带隙基准源,该基准源在预调节电路中应用了电源行波减法技术,显著改善了输出电压的电源抑制比。提出了采用电流负反馈技术稳定预调节电路电流的方法,降低了带隙基准的温度特性和电源抑制比对阈值电压的敏感度。考虑晶体管阈值电压发生±20%变化的情况下,仿真得到的基准源的温度系数和电源抑制比变化分别只有0.11ppm和7dB。测试结果表明,该基准源在-20~100℃的范围内的有效温度系数为25.7ppm/℃,低频电源抑制比为-68dB。其功耗为0.5mW,采用中芯国际0.35μm5-V混合信号CMOS工艺实现,有效芯片面积为300μm×200μm。  相似文献   

14.
本文提出一种高电源抑制比、高阶温度补偿CMOS带隙基准电压源。该基准源的核心电路结构由传统的Brokaw带隙基准源和一个减法器构成。文中采用第二个运放产生一个负温度系数的电流来增强曲率补偿,同时把该负温度系数电流与核心基准源电路产生的正温度系数电流求和得到一个与温度无关的电流给运放提供偏置电流。该电路采用0.35umCMOS工艺实现,仿真结果表明PSRR在1kHz时达到88dB,-40-125℃的范围内温度系数为1.03ppm/℃。  相似文献   

15.
电压基准电路是目前广泛应用于直流电源变换器和数模/模数转换器件设计的一种电路单元.本文从基本工作原理出发,结合实际应用与理论推导,给出一款基于BiCMOS工艺的精确、高PSRR的带隙基准电路的设计.  相似文献   

16.
基于SMIC 65 nm CMOS工艺,设计了一种带曲率补偿的低压高电源抑制比(PSRR)带隙基准电压源。采用带曲率补偿的电流模结构,使输出基准电压源低于1.2 V且具有低温漂系数。在基本的带隙基准电路基础上,增加基准核的内电源产生电路,显著提高了电路的PSRR。采用Cadence Spectre软件,在1.8 V电压下对电路进行仿真。结果表明,在1 kHz以下时,PSRR为-95.76 dB,在10 kHz时,PSRR仍能达到88.51 dB,在-25 ℃~150 ℃温度范围内的温度系数为2.39×10-6 /℃。  相似文献   

17.
孙大开  李斌桥  徐江涛  李晓晨 《微电子学》2012,42(4):531-533,550
描述了一个具有高电源抑制比和低温度系数的带隙基准电压源电路。基于1阶零温度系数点可调节的结构,通过对不同零温度系数点带隙电压的转换实现低温度系数,并采用了电源波动抑制电路。采用SMIC 0.18μm CMOS工艺,经过Cadence Spectre仿真验证,在-20℃~100℃温度范围内,电压变化范围小于0.5mV,温度系数不超过7×10-6/℃。低频下的电源抑制比为-107dB,在10kHz下,电源抑制比可达到-90dB。整个电路在供电电压大于2.3V时可以实现正常启动,在3.3V电源供电下,电路的功耗约为1.05mW。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号