首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
针对圆弧形超硬砂轮修整难度大、修整精度低的问题,对树脂结合剂圆弧形金刚石砂轮进行了精密修整研究。设计制造了一种垂直式超硬砂轮圆弧修整器,通过修整试验研究了不同粒度的圆弧形砂轮在修整前后表面粗糙度、弧形精度、圆度、表面形貌的变化情况。砂轮修整前后对氮化硅陶瓷轴承套圈沟道进行了磨削,并测量了磨削后的轴承套圈沟形精度。研究结果表明:相比修整前,修整后砂轮表面粗糙度平均值由1.731 8 μm减小至0.772 4 μm,减小了55.4%;弧形精度平均值由33.604 7 μm减小至8.527 6 μm,减小了74.6%,修整后4个砂轮的弧形精度更加稳定,且随着砂轮粒度的减小,弧形精度略有减小趋势;砂轮圆度平均值由43.721 μm减小至18.002 μm,减小了58.8%,修整使大量新的磨粒露出。所设计的垂直式超硬砂轮圆弧形修整器可对圆弧砂轮进行精密修整,可改善圆弧形砂轮的弧形精度及圆度,修整后砂轮磨削的轴承套圈沟形精度得到了大幅提高。  相似文献   

2.
赵云龙 《轴承》2007,(10):16-17
3MZ1420A外沟磨床砂轮圆弧修整器使用一段时间后,其回转速度不均匀,造成砂轮修整后外形轮廓达不到要求,磨削后套圈沟道的表面粗糙度及沟形误差变大。在分析砂轮圆弧修整器工作原理的基础上,详细论述了改进过程及效果。  相似文献   

3.
大尺寸光学玻璃元件主要采用细磨粒金刚石砂轮进行精密/超精密磨削加工,但存在砂轮修整频繁、工件表面面形精度难以保证、加工效率低等缺点。采用大磨粒金刚石砂轮进行加工则具有磨削比大、工件面形精度高等优点,然而高效精密的修整是其实现精密磨削的关键技术。采用Cr12钢对电镀金刚石砂轮(磨粒粒径151 μm)进行粗修整,借助修整区域聚集的热量加快金刚石的磨损,可使砂轮的回转误差快速降至10 μm以内。结合在线电解修锐技术,采用杯形金刚石修整滚轮对粗修整后的电镀砂轮进行精修整,砂轮的回转误差可达6 μm以内,轴向梯度误差由6 μm降至2.5 μm。通过对修整前后的金刚石砂轮表面磨损形貌成像及其拉曼光谱曲线分析了修整的机理。对应于不同的砂轮修整阶段进行熔融石英光学玻璃磨削试验,结果表明,砂轮回转误差较大时,工件材料表面以脆性断裂去除为主;随着砂轮回转误差和轴向梯度误差的减小,工件表面材料以塑性去除为主,磨削表面粗糙度为Ra19.6 nm,亚表层损伤深度低至2 μm。可见,经过精密修整的大磨粒电镀金刚石砂轮可以实现对光学玻璃的精密磨削。  相似文献   

4.
应用超硬大磨粒金刚石砂轮实现BK7光学玻璃的超精密磨削   总被引:1,自引:0,他引:1  
首先以91μm磨粒杯形铜基金刚石砂轮作为修整器并结合砂轮在线电解修锐技术(ELID,Electrolytic in- process dressing)对151μm磨粒电镀镍基单层金刚石砂轮进行精密高效的修整。在最佳的修整参数下,同时应用测力仪对两个砂轮间磨削力进行监测,并应用共轴光学位移检测系统对砂轮表面状态进行在位监测,151μm砂轮的回转误差被减小至1~2μm范围,同时砂轮上所有金刚石磨粒被修整出平坦表面并拥有恒定的圆周包迹,此时砂轮达到最佳工作状态。然后应用被良好修整的砂轮对光学玻璃BK7进行磨削加工。磨削试验结果和亚表层完整度评价结果表明新开发的大磨粒金刚石砂轮修整技术的可行性,也验证大磨粒金刚石砂轮只要经过精密修整是可以应用于光学玻璃的延展性超精密磨削加工的,并能实现纳米级的表面粗糙度,显示出大磨粒金刚石砂轮在加工难加工材料和硬脆材料中的良好应用前景。  相似文献   

5.
单层钎焊金刚石砂轮的修整实验研究   总被引:1,自引:0,他引:1  
张贝  傅玉灿  苏宏华 《中国机械工程》2014,25(13):1778-1783
为满足单层钎焊金刚石砂轮高效精密加工的性能要求,对磨粒有序排布单层钎焊金刚石砂轮的修整进行了实验研究。采用磨粒有序排布的钎焊金刚石修整工具对钎焊砂轮进行了修整,该修整方法通过修整工具粒度的变化以及修整速比的调整来控制砂轮形貌,从而使氧化锆的磨削表面粗糙度达到了精密加工的水平。对砂轮形貌进行了观测统计,数据表明,砂轮磨粒的等高性得到明显改善且避免了磨粒端部的严重钝化。  相似文献   

6.
对金刚石笔辅助超声振动修整法修整CBN砂轮进行试验研究。试验结果表明超声振动修整对调节砂轮表面形貌非常有效。振动修整的砂轮,其表面静态有效磨粒数多于普通修整,磨粒特征亦优于普通修整,并且不同超声频率修整条件下,砂轮表面静态有效磨粒数随着修整导程的增加而减少,随修整切深的增大呈下降趋势。选择合理的参数,采用超声振动修整,可以实现CBN砂轮的精密修整。  相似文献   

7.
针对球面、非球面及自由曲面超精密磨削加工用树脂基圆弧形金刚石砂轮难以精密修整的问题,提出基于旋转绿碳化硅(GC)磨棒的在位精密成形修整技术。在分析GC磨棒和圆弧砂轮几何关系的基础上,确定修整过程中圆弧插补轨迹的补偿方法及GC磨棒运动轨迹的设计方案。采用KEYENCE激光测微仪采集砂轮圆弧特征点,表征圆弧砂轮的修整状况。研究不同粒度的GC磨棒、进给深度和圆弧插补速度对圆弧金刚石砂轮修整率和修整精度的影响规律。研究结果表明,该修整方法可根据加工曲率半径要求实现不同圆弧半径砂轮的精密在位修整,修整后可自动消除砂轮垂直方向的位置偏差;采用400#和800#的GC磨棒对D3和D7砂轮均有较高的修整率(0.7~6.7);与400#和1500#的GC磨棒相比,800#GC磨棒更适合粒度为D3和D7圆弧金刚石砂轮的精密修整;相比圆弧插补速度,进给深度对砂轮的圆弧半径尺寸误差和形状误差影响更大,进给深度越小,圆弧半径尺寸误差和形状误差越小;修整后两种砂轮的圆弧半径误差均可控制在5%以内,D3砂轮的形状误差可控制在3μm/4 mm以内,D7金刚石砂轮可控制在6μm/4 mm以内,修整后比修整前形状误差提高14倍左右。  相似文献   

8.
粗粒度金属基金刚石砂轮磨削效率高,面形精度保持性好,可以满足各种成形零件的精密加工,但存在因修整困难而难以推广的问题。针对该问题,提出采用电火花机械磨削法修整粗粒度金刚石砂轮。探究了放电参数对修整效率及刀具损耗量的影响规律,并以修整效率为优化目标选取粗修整试验放电参数,以修整精度为优化目标选取精修整试验放电参数。设计了半径为3 mm的凹圆弧、凸圆弧砂轮修整试验,粗修整后凹圆弧、凸圆弧半径分别为2867.510μm、2919.254μm,尺寸误差分别为4.43%、2.69%,轮廓精度PV值为54.34μm;精修整后凹圆弧、凸圆弧半径分别为3005.107μm、3001.588μm,尺寸误差分别为0.17%、0.053%,轮廓精度PV值为17.28μm。最后,磨削碳化硅陶瓷试件,获得凹圆弧、凸圆弧半径的尺寸误差分别为0.24%、0.045%,工件表面粗糙度Ra可达0.463μm。  相似文献   

9.
针对大直径凸弧金刚石砂轮硬度高、表面形貌复杂、修整难度大以及修整弧形精度低的问题,提出了一种应用于大直径凸弧金刚石砂轮立式精密挤压修磨的砂轮修整方法,设计研发了大直径超硬凸弧砂轮立式在线精密修整装置。其基本原理是高强度金刚石凸弧修整轮自转并进行立式圆弧摆动形成约束圆弧面,通过金刚石凸弧修整轮与金刚石砂轮磨粒之间产生的挤压微磨削作用对金刚石砂轮进行精密修磨成型。对基本修整工艺规律进行了研究分析与初步试验探索。通过金刚石砂轮修整前后磨削全陶瓷球轴承内圈的沟道精度对比分析表明,该砂轮修整理论、修整装置与修整工艺能够实现大直径凸弧微粒度金刚石砂轮精密修整,并达到所需修整的精度要求。  相似文献   

10.
针对超硬磨料砂轮存在修整困难的问题,基于金刚石和普通材料在强度上存在巨大差异的特点,提出了一种在金刚石型面约束下将磨粒挤压和修磨相结合的修整方法,其基本原理是:表面有精密形状的金刚石工具通过高速旋转生成具有约束能力的高强度型面,型面通过约束自由磨粒对被修砂轮产生挤压划擦作用破坏砂轮结合剂完成砂轮高效修形,同时通过修整工具高强度金刚石磨料的微研削作用对被修砂轮型面进行进一步精密修磨。对约束型面的形成及自由磨粒在型面约束下挤压和研削作用机制进行了分析,并介绍了挤磨修整系统的构成和特性,对修整力、修磨速度和自由磨粒等参数影响规律进行了初步试验探索,结果表明,自由磨粒型面约束下的挤压能够实现超硬磨料砂轮的快速成形精密修整。  相似文献   

11.
单层钎焊金刚石砂轮作为一种新型的磨削工具,具有磨粒固结强度高、磨粒出露大、容屑空间大等优点,比较适合高效率大切深的强力磨削,然而这种工具对高性能的脆性材料的精密磨削却比较困难。本文通过两种精密的修整工艺,使得加工表面质量大大提高。通过观察砂轮磨粒形态的变化可知,磨粒在修整过程中存在有磨损钝化、破碎、表面粘附等现象;通过对砂轮轮廓的激光测量可知,砂轮的磨粒等高性在修整过程中是明显改善的。通过修整磨粒粒径300μm的钎焊砂轮磨削氧化锆的表面粗糙度达到了Ra0.2μm。  相似文献   

12.
陶瓷材料的超精密磨削加工   总被引:3,自引:1,他引:2  
对陶瓷材料超精密磨削加工的研究结果表明,陶瓷等脆性材料的磨削表面粗糙度主要与砂轮的平均磨粒尺寸、进给量等因素有关。只有当金刚石砂轮的平均磨粒尺寸小于18 .5μm 时,才能在塑性磨削模式下加工出表面粗糙度为rms4 .15nm 、 Ra3 .07nm 的高质量光滑表面。  相似文献   

13.
利用粉末注射成形和真空钎焊技术制备了一种新型金刚石砂轮,制备的新型金刚石砂轮具有金刚石把持力大、金刚石微刃有序排布等特点。进行了基于新型金刚石砂轮的Al2O3陶瓷磨削性能研究。实验结果表明:相对于普通树脂结合剂金刚石砂轮,新型金刚石砂轮磨削Al2O3陶瓷的加工表面形貌完整性较好,宏观裂纹和表面损伤相对较少;表面粗糙度较小,当进给速度为40mm/s、磨削深度为40μm时,加工表面粗糙度Ra在0.68μm左右;在相同实验条件下,新型金刚石砂轮的磨削力减小了12%~17%,磨削温度降低了80~120℃。  相似文献   

14.
超硬磨料砂轮的激光修锐技术研究   总被引:26,自引:4,他引:22  
激光修整超硬磨料砂轮的原理,利用Nd:YAG固体脉冲激光器进行激光修锐青铜结合剂和树脂结合剂硬磨料砂轮的试验,用扫描电镜观察了激光修锐前后砂轮表面的微观表貌,对激光作用下砂轮表面不同结合剂材料的去除机理进行了分析,通过磨削陶瓷试验,研究激光修锐的金刚石砂轮的磨削性能,并与普通砂轮磨削肖修锐的金刚石砂轮进行对比。结果表明,采用试验所确定的激光参数可选择性地去除砂轮表面的结合剂材料,而不损伤超硬磨粒,  相似文献   

15.
多线砂轮复合自动修磨装置采用CNC数控系统,利用两个独立金刚石滚轮休整器,实现单支和多支砂轮的高精度修磨,极大地降低了人工操作带来的加工误差,提高了产品加工精度和效率。通过表面粗糙度检测数据可知,具有多线砂轮复合自动修磨装置的数控丝锥螺纹磨床完全符合加工精度要求。同时,采用多元回归方程建立基于砂轮修整参数的表面粗糙度预测模型,并设计单因素试验,得到砂轮修整参数与表面粗糙度之间的关系。由显著性分析结果得出,径向修整进给量是影响表面粗糙度的主要因素。  相似文献   

16.
采用椭圆超声振动辅助金刚石笔修整方法修整金属结合剂金刚石砂轮,考察声学系统参数及磨削参数对超声振动辅助磨削纳米氧化锆陶瓷过程中磨削温度的影响.试验结果表明,椭圆超声振动辅助修整的金刚石砂轮超声振动磨削中,磨削温度相对较低.相比其他修整参数,修整深度对磨削温度的影响较小.磨削参数中,磨削深度对磨削温度影响因子较大,砂轮速度影响较弱.此外,磨粒在切削过程中做超声振动,改变了切削条件及散热条件,弱化了砂轮表面地貌对磨削温度的影响,因此,不同修整方式的金刚石砂轮的磨削温度差别不大,两种修整方式下磨削温度下降的梯度大致相当.  相似文献   

17.
崔丽琴  雷绳明 《轴承》2007,(6):13-15
介绍了主要用于立式数控磨床大型回转支承双圆弧滚道加工的数控砂轮修整装置。为保证砂轮的修整精度和表面质量,结合数控磨床的结构特点,开发了一种机、电、液、气相集成的数控砂轮修整装置。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号