首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 132 毫秒
1.
基于MRF场的SAR图像分割方法   总被引:10,自引:0,他引:10  
提出了一种基于MRF(Markov Random field)模型的SAR(Synthetic Aperture Radar)图像分割算法,本算法利用ICM((Iterative Conditional Mode)局部 优化方法,获得MAP(maximum a posteriori)准则下的图像分割结果。并引入了剔除外层数据的机制,用MSTAR(Moving and Stationary Target Acquisition and Recognition)数据进行实验,结果表明,算法能有效减少斑点噪声的影响将图像分割为目标,阴影,背景三部分,实验结果是令人满意的。  相似文献   

2.
基于多尺度MRF的膝关节MRI图像快速分割   总被引:1,自引:0,他引:1       下载免费PDF全文
膝关节MRI图像中骨骼的精确分割是进一步分割与定量分析膝部软组织的前提。目前膝关节骨骼分割的方法比较耗时或需要一定的人机交互。为解决这一问题,将多尺度MRF方法引入到膝关节MRI分割中,以实现快速无监督的分割。首先建立高斯混合的灰度统计模型,运用MDL准则自动确定类别的数目。建立多尺度MRF的先验模型时,利用尺度间的因果性给出非迭代的计算方法,由细尺度往粗尺度传递统计信息,再由粗尺度往细尺度计算每个像素的最大后验概率,从而实现快速准确的分割。实验结果表明,与单尺度MRF相比,多尺度MRF分割膝关节MRI所需时间大大减少,且精度与专家手动分割标准相当。算法通过建立多尺度马尔可夫随机场模型,完成了低信噪比膝关节MRI图像快速准确分割,可作为进一步自动分割软骨与半月板等软组织的基础。  相似文献   

3.
针对在高分辨率SAR图像上具有明显L型结构高亮特征的建筑物目标,提出了一种提取高分辨率SAR图像建筑物L型结构中心线,并进而提取建筑物几何信息的方法.运用基于Gabor纹理特征和模糊C均值的方法对SAR图像进行分割,再结合骨架提取、骨架跟踪、最小外接矩形提取、最小二乘准则等技术实现了L型结构中心线的提取,最后利用中心线获取了建筑物的长度、宽度和方位角信息.基于机载SAR图像的实验表明,利用提出的方法从SAR图像提取的建筑物几何结构和方位信息具有较高的精度.  相似文献   

4.
基于SAR影像进行建筑物提取与高度反演,可行的技术方法种类繁多。以使用的影像数量和分辨率为序,以使用的灰度、相位、极化信息为核心,分别从二维提取、三维高度反演两个方面总结了这一技术主题的研究发展现状;并结合当前SAR影像高分辨率、全极化的数据特点和国际最新研究动向,对这一研究方向进行了展望。  相似文献   

5.
针对纹理图像分割问题的研究,经典的多尺度MRF方法是对不同尺度的纹理特征仅通过多尺度序列下的MRF邻域系统进行描述。为了更加准确地描述纹理特征,将从空间分布特性与MRF邻域系统两个方面综合考虑,提出一种带有联合灰度信息的灰度共生矩阵与多尺度MRF相结合的方法。实验结果表明,该方法能够有效地提高分割准确度。  相似文献   

6.
张建光  陈萍 《福建电脑》2012,28(9):22-22
本文介绍了两尺度贝叶斯网络的模型构成、邻域构成,以及基于两尺度贝叶斯网络模型的图像分类理论,并且验证了该方法在SAR图像的分类中应用。实验证明两尺度贝叶斯网络的分类结果要优于单尺度贝叶斯网络和MRF—ICM的分类结果。  相似文献   

7.
面向对象的高分辨率SAR图像处理及应用   总被引:1,自引:1,他引:1       下载免费PDF全文
目的随着合成孔径雷达(SAR)技术和分辨率的不断提高,越来越多的空间细节呈现在高分辨率SAR影像上。与此同时,SAR图像的数据量越来越大,人们对其应用需求也越来越高,这使得传统的基于像素的SAR处理方法不再适用。面向对象分析技术以像元集合——"对象"为分析单元,为高分辨率遥感图像处理提供了有效的思路,并日渐成为遥感、摄影测量以及GIS等领域所关注的对象和研究热点之一。目前该技术在光学遥感中已经得到了广泛的应用,但在SAR图像处理中的应用还处于起步阶段。方法本文在简要阐述面向对象分析技术起源和特点的基础上,对SAR图像面向对象技术中常用的多尺度分割算法进行了分类分析,接着对面向对象技术在SAR遥感的应用方向进行全面介绍,最后对面向对象技术在SAR上的应用进行了总结与展望。结果面向对象分析技术在SAR图像处理中的应用主要分为以下五个方面:地物分类、城市信息提取、变化检测、海洋应用、森林应用。结论面向对象分析技术在解决高分辨率SAR图像尺度效应、抑制噪声等方面有着重要作用。目前,国外学者在基于SAR的面向对象分析技术研究上已经取得了一定的进展,但总体上该技术仍面临诸多问题,需要进一步的研究和完善。  相似文献   

8.
熊毅  田铮  郭小卫 《计算机应用》2006,26(2):412-0414
在多尺度Markov模型的基础上,提出了一种新的用于SAR图像无监督分割的上下文融合分割方法。该方法充分考虑了SAR图像分布的统计特性,用基于混合Rayleigh分布的多尺度Markov模型对待分割图像建模,并直接根据待分割图像用迭代条件估计算法来训练模型的参数。然后以上下文向量的形式提出了四种不同的上下文模型,并用这四种上下文模型分别对待分割图像的多尺度图像信息进行自上而下的融合,最终得到四种不同的分割结果。实验表明,该方法进一步提高了SAR图像分割结果的精度。  相似文献   

9.
本文尝试基于半塔型多尺度MRF分割算法运用面向对象的方法对道路信息进行提取.运用半塔型多尺度MRF分割可以在某种程度上解决过分割与欠分割的矛盾,而面向对象的道路提取类似于大脑的思维模式,是自动化提取的一种重要方法.结果提取自动化程度提高、速度更快.  相似文献   

10.
刘保利 《计算机应用》2008,28(4):990-992
基于最大期望(EM)算法与遗传算法(GA),提出一种有效的多尺度SAR图像无监督分割方法。该方法首先利用混合多尺度自回归(MMAR)模型描述SAR图像中由于雷达斑点所引起的不同尺度和同一尺度内像素之间的统计相依性; 然后将GA与EM结合给出MMAR模型的参数估计算法。这种算法利用最小描述长度(MDL)准则,能够选择模型的分量数;最后利用Bayes分类器实现图像的分割。该方法集遗传算法和EM算法的优点,对初始值有较少的敏感性,避免局部最优解,提高了分割精度。实验结果表明GA EM方法优于EM算法。  相似文献   

11.
针对复杂背景下的合成孔径雷达(SAR)图像的分割问题,提出一种基于非降采样Contourlet变换(NSCT)域马尔可夫(MRF)模型的算法。该算法综合利用了MRF模型在影像分割中的优势和图像的多分辨率描述的信息,采用高斯混合模型建模各个尺度的特征场,Potts模型建模各个尺度的标记场,大尺度的分割结果直接投影到小尺度上,作为分割的初始结果。实验部分与经典的阈值分割算法和马尔可夫分割算法进行比较、分析,结果表明该算法可准确地分割目标,同时保留目标的细节信息。  相似文献   

12.
基于条件随机场和图像分割的显著性检测   总被引:3,自引:0,他引:3  
针对当前常见的显著性方法检测得到的显著性区域边界稀疏不明确、内部不均匀致密等问题,提出了一种基于条件随机场(Condition random field, CRF)和图像分割的显著性检测方法.该方法综合利用边界信息、局部信息以及全局信息,从图像中提取出多种显著性特征;在条件随机场框架下融合这些特征,通过显著性区域与背景区域的区域标注实现显著性区域的粗糙检测;结合区域标注结果和交互式图像分割方法实现显著性区域的精确检测.实验结果表明本文提出的方法能够清晰而准确地提取出图像中的显著性区域,有效提高显著性检测精度.  相似文献   

13.
针对传统SLIC超像素算法在高分辨率遥感影像上分割质量差的问题,提出一种基于降维的改进SLIC与区域合并的方法对建筑物进行分割.首先,对传统SLIC的五维计算进行降维简化,采用灰度特征信息替换色彩信息,减少LAB颜色空间五维特征向量表征的冗余;其次,采用区域邻接图对过分割图像进行合并;最后,对改进SLIC中的主要参数即超像素数目k、紧凑度m和迭代次数p对分割结果的影响做了分析与比较.实验表明:该方法不仅分割出了大部分的建筑物信息,还提高了算法的运行效率与空间效率.运行时间效率比传统SLIC提高了25.5%;对建筑物的提取精度能达到97.6%.  相似文献   

14.
闫沫  王瑜 《计算机工程》2012,38(22):201-204
合成孔径雷达(SAR)图像中存在严重的相干斑干扰,使得SAR的图像解译过程较为困难。为此,提出一种基于组件树的SAR图像分割算法。对SAR图像建立组件树,给出基于全局特征的自适应非局部判定准则,使用该准则对组件树中的相似组件进行合并,保留组件树中最重要的组件,以完成图像滤波,获取分割后的目标。实验结果表明,该算法能获得准确的分割结果,保持目标的细节信息。  相似文献   

15.
针对动态图像序列中背景成像过程因各种因素而变化存在复杂性,提出了一种基于细胞神经网络(CNN)和马尔可夫随机场(MRF)的目标分割方法.首先根据细胞神经网络与马尔可夫随机场能量函数的相似性,将马尔可夫随机场的最大后验概率模型映射到细胞神经网络近邻系统模型中.然后建立图像每一像素点的邻域系统模型,并且构造相应的能量函数.为使能量函数达到快速收敛,再利用模拟退火算法实现能量函数的最小值,以达到对运动目标的提取.由于CNN是由局部互连的细胞组成,因此易于用VLSI实现.实验的结果表明,该方法能够有效地抑制图像的噪声,对于运动目标的提取有较好的分割效果.  相似文献   

16.
姚婷婷  谢昭 《自动化学报》2013,39(10):1581-1593
针对彩色图像分割问题,研究Markov 随机场(Markov random fields, MRF)模型内迭代条件模式(Iterative conditional mode, ICM)方法的标记推理策略. 通过小波分解构造图像多尺度表达,针对顶层图像先验标记获取问题,改进原始谱聚类算法, 通过近邻传播自动确定图像的聚类参数,运用集成学习提高算法的稳定性和准确度. 对其他各尺度图像,通过分析尺度关联下的区域特征变化,结合不同尺度间的特征相似性和同一尺度内空间邻域的一致性, 提出一种立体结构描述下的尺度--空间映射法则.通过定量和定性的分割实验,结果表明本文算法具有良好的准确性、鲁棒性和普适性.  相似文献   

17.
余航  焦李成  刘芳 《自动化学报》2014,40(1):100-116
基于聚类的分割算法能够有效地分析目标特征在特征域的分布结构,进而准确判断目标的所属类别,但难以利用图像的空间和边缘信息,而基于区域增长的分割算法能够在空间域利用多种图像信息计算目标之间的相似性,但缺乏对特征结构本身的深层挖掘,容易出现欠分割或过分割的结果. 本文结合这两种算法各自的优势,针对合成孔径雷达(Synthetic aperture radar,SAR)图像的特点,提出了一种基于上下文分析的无监督分层迭代算法. 该算法使用过分割区域作为操作单元,以提高分割速度,降低SAR图像相干斑噪声的影响. 在合并过分割区域时,该算法采用了分层迭代的策略:首先,设计了一种改进的模糊C均值聚类算法,对过分割区域的外观特征进行聚类分析,获得其类别标记,该类别标记包含了特征的分布结构信息. 然后,利用多种SAR图像特征对同类区域的空域上下文进行分析,使用区域迭代增长算法对全局范围内的相似区域进行合并,直到不存在满足合并条件的过分割区域对为止,再重新执行聚类算法. 这两种子算法分层交替迭代,扬长避短,实现了一种有效的方法来组织和利用多种信息对SAR图像进行分割. 对模拟和真实SAR图像的实验表明,本文提出的算法能够在区域一致性和细节保留之间做到很好的平衡,准确地分割出各类目标区域,对相干斑噪声具有很强的鲁棒性.  相似文献   

18.
针对常规马尔科夫随机场(MRF)模型对复杂自然图像分割时,存在对噪声敏感且边缘模糊的问题,构建一种基于边缘约束局部区域MRF(ECLRMRF)的图像分割模型.利用欧氏距离度量局部区域内邻接像素的相似度,依据其相似度构建局部空间来约束高斯混合模型,有效描述丰富的局部区域统计特征,并建立MRF模型的局部区域一致性约束项.利...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号