共查询到19条相似文献,搜索用时 62 毫秒
1.
基于MRF场的SAR图像分割方法 总被引:10,自引:0,他引:10
提出了一种基于MRF(Markov Random field)模型的SAR(Synthetic Aperture Radar)图像分割算法,本算法利用ICM((Iterative Conditional Mode)局部 优化方法,获得MAP(maximum a posteriori)准则下的图像分割结果。并引入了剔除外层数据的机制,用MSTAR(Moving and Stationary Target Acquisition and Recognition)数据进行实验,结果表明,算法能有效减少斑点噪声的影响将图像分割为目标,阴影,背景三部分,实验结果是令人满意的。 相似文献
2.
基于多尺度MRF的膝关节MRI图像快速分割 总被引:1,自引:0,他引:1
膝关节MRI图像中骨骼的精确分割是进一步分割与定量分析膝部软组织的前提。目前膝关节骨骼分割的方法比较耗时或需要一定的人机交互。为解决这一问题,将多尺度MRF方法引入到膝关节MRI分割中,以实现快速无监督的分割。首先建立高斯混合的灰度统计模型,运用MDL准则自动确定类别的数目。建立多尺度MRF的先验模型时,利用尺度间的因果性给出非迭代的计算方法,由细尺度往粗尺度传递统计信息,再由粗尺度往细尺度计算每个像素的最大后验概率,从而实现快速准确的分割。实验结果表明,与单尺度MRF相比,多尺度MRF分割膝关节MRI所需时间大大减少,且精度与专家手动分割标准相当。算法通过建立多尺度马尔可夫随机场模型,完成了低信噪比膝关节MRI图像快速准确分割,可作为进一步自动分割软骨与半月板等软组织的基础。 相似文献
3.
针对在高分辨率SAR图像上具有明显L型结构高亮特征的建筑物目标,提出了一种提取高分辨率SAR图像建筑物L型结构中心线,并进而提取建筑物几何信息的方法.运用基于Gabor纹理特征和模糊C均值的方法对SAR图像进行分割,再结合骨架提取、骨架跟踪、最小外接矩形提取、最小二乘准则等技术实现了L型结构中心线的提取,最后利用中心线获取了建筑物的长度、宽度和方位角信息.基于机载SAR图像的实验表明,利用提出的方法从SAR图像提取的建筑物几何结构和方位信息具有较高的精度. 相似文献
4.
5.
针对纹理图像分割问题的研究,经典的多尺度MRF方法是对不同尺度的纹理特征仅通过多尺度序列下的MRF邻域系统进行描述。为了更加准确地描述纹理特征,将从空间分布特性与MRF邻域系统两个方面综合考虑,提出一种带有联合灰度信息的灰度共生矩阵与多尺度MRF相结合的方法。实验结果表明,该方法能够有效地提高分割准确度。 相似文献
6.
本文介绍了两尺度贝叶斯网络的模型构成、邻域构成,以及基于两尺度贝叶斯网络模型的图像分类理论,并且验证了该方法在SAR图像的分类中应用。实验证明两尺度贝叶斯网络的分类结果要优于单尺度贝叶斯网络和MRF—ICM的分类结果。 相似文献
7.
面向对象的高分辨率SAR图像处理及应用 总被引:2,自引:1,他引:1
目的随着合成孔径雷达(SAR)技术和分辨率的不断提高,越来越多的空间细节呈现在高分辨率SAR影像上。与此同时,SAR图像的数据量越来越大,人们对其应用需求也越来越高,这使得传统的基于像素的SAR处理方法不再适用。面向对象分析技术以像元集合——\"对象\"为分析单元,为高分辨率遥感图像处理提供了有效的思路,并日渐成为遥感、摄影测量以及GIS等领域所关注的对象和研究热点之一。目前该技术在光学遥感中已经得到了广泛的应用,但在SAR图像处理中的应用还处于起步阶段。方法本文在简要阐述面向对象分析技术起源和特点的基础上,对SAR图像面向对象技术中常用的多尺度分割算法进行了分类分析,接着对面向对象技术在SAR遥感的应用方向进行全面介绍,最后对面向对象技术在SAR上的应用进行了总结与展望。结果面向对象分析技术在SAR图像处理中的应用主要分为以下五个方面:地物分类、城市信息提取、变化检测、海洋应用、森林应用。结论面向对象分析技术在解决高分辨率SAR图像尺度效应、抑制噪声等方面有着重要作用。目前,国外学者在基于SAR的面向对象分析技术研究上已经取得了一定的进展,但总体上该技术仍面临诸多问题,需要进一步的研究和完善。 相似文献
8.
针对在建筑物三维重建过程中特征点提取阶段,存在大量特征点集中在非建筑物的其他目标上的问题,提出了一种结合视觉显著性与连通域分割的建筑物主体图像分割算法。通过视觉显著性算法与连通域分割算法滤除大量无关背景,保留建筑物主体;再将滤掉的背景与保留的建筑物主体部分都进行超像素分割,对所得的背景分块与建筑物主体分块取其最大内接矩形代表该分块,然后分别计算矩形块的颜色相似值和纹理相似值,根据相似性来去除建筑物主体部分中残留的背景块;最后,使用一个适用于建筑物环境的绿色因子,将树、灌木丛等干扰目标去除。实验结果表明,相较传统图像分割算法,该算法能够有效地将建筑物主体图像完整地分割出来,提高建筑物的三维重建效果。 相似文献
9.
基于最大期望(EM)算法与遗传算法(GA),提出一种有效的多尺度SAR图像无监督分割方法。该方法首先利用混合多尺度自回归(MMAR)模型描述SAR图像中由于雷达斑点所引起的不同尺度和同一尺度内像素之间的统计相依性; 然后将GA与EM结合给出MMAR模型的参数估计算法。这种算法利用最小描述长度(MDL)准则,能够选择模型的分量数;最后利用Bayes分类器实现图像的分割。该方法集遗传算法和EM算法的优点,对初始值有较少的敏感性,避免局部最优解,提高了分割精度。实验结果表明GA EM方法优于EM算法。 相似文献
10.
在多尺度Markov模型的基础上,提出了一种新的用于SAR图像无监督分割的上下文融合分割方法。该方法充分考虑了SAR图像分布的统计特性,用基于混合Rayleigh分布的多尺度Markov模型对待分割图像建模,并直接根据待分割图像用迭代条件估计算法来训练模型的参数。然后以上下文向量的形式提出了四种不同的上下文模型,并用这四种上下文模型分别对待分割图像的多尺度图像信息进行自上而下的融合,最终得到四种不同的分割结果。实验表明,该方法进一步提高了SAR图像分割结果的精度。 相似文献
11.
针对传统SLIC超像素算法在高分辨率遥感影像上分割质量差的问题,提出一种基于降维的改进SLIC与区域合并的方法对建筑物进行分割.首先,对传统SLIC的五维计算进行降维简化,采用灰度特征信息替换色彩信息,减少LAB颜色空间五维特征向量表征的冗余;其次,采用区域邻接图对过分割图像进行合并;最后,对改进SLIC中的主要参数即超像素数目k、紧凑度m和迭代次数p对分割结果的影响做了分析与比较.实验表明:该方法不仅分割出了大部分的建筑物信息,还提高了算法的运行效率与空间效率.运行时间效率比传统SLIC提高了25.5%;对建筑物的提取精度能达到97.6%. 相似文献
12.
13.
目的 合成孔径雷达(SAR)图像中像素强度统计分布呈现出复杂的特性,而传统混合模型难以建模非对称、重尾或多峰等特性的分布。为了准确建模SAR图像统计分布并得到高精度分割结果,本文提出一种利用空间约束层次加权Gamma混合模型(HWGaMM)的SAR图像分割算法。方法 采用Gamma分布的加权和定义混合组份;考虑到同质区域内像素强度的差异性和异质区域间像素强度的相似性,采用混合组份加权和定义HWGaMM结构。采用马尔可夫随机场(MRF)建模像素空间位置关系,利用中心像素及其邻域像素的后验概率定义混合权重以将像素邻域关系引入HWGaMM,构建空间约束HWGaMM,以降低SAR图像内固有斑点噪声的影响。提出算法结合M-H(Metropolis-Hastings)和期望最大化算法(EM)求解模型参数,以实现快速SAR图像分割。该求解方法避免了M-H算法效率低的缺陷,同时克服了EM算法难以求解Gamma分布中形状参数的问题。结果 采用3种传统混合模型分割算法作为对比算法进行分割实验。拟合直方图结果表明本文算法具有准确建模复杂统计分布的能力。在分割精度上,本文算法比基于高斯混合模型(GMM)、Gamma分布和Gamma混合模型(GaMM)分割算法分别提高33%,29%和9%。在分割时间上,本文算法虽然比GMM算法多64 s,但与基于Gamma分布和GaMM算法相比较分别快600 s和420 s。因此,本文算法比传统M-H算法的分割效率有很大的提高。结论 提出一种空间约束HWGaMM的SAR图像分割算法,实验结果表明提出的HWGaMM算法具有准确建模复杂统计分布的能力,且具有较高的精度和效率。 相似文献
14.
针对复杂背景下的合成孔径雷达(SAR)图像的分割问题,提出一种基于非降采样Contourlet变换(NSCT)域马尔可夫(MRF)模型的算法。该算法综合利用了MRF模型在影像分割中的优势和图像的多分辨率描述的信息,采用高斯混合模型建模各个尺度的特征场,Potts模型建模各个尺度的标记场,大尺度的分割结果直接投影到小尺度上,作为分割的初始结果。实验部分与经典的阈值分割算法和马尔可夫分割算法进行比较、分析,结果表明该算法可准确地分割目标,同时保留目标的细节信息。 相似文献
15.
在传统信息提取方法的基础上,提出监督分类和规则分类相结合的方法以及基于知识规则的多尺度分割方法进行建筑物的提取,旨在简单高效地从高分辨率影像数据中准确提取出城区建筑物,并通过北京市区的GeoEye-1影像进行方法验证.结果表明:提出的两种方法的Kappa系数均达到了87%,相比传统的监督分类方法提高了22%,其中生产者精度提高了30%以上,精度较高,而且这两种方法原理简单,适于流程化操作,具有明显的优越性. 相似文献
16.
针对高分辨率SAR图像中的建筑物高度提取问题,提出了一种基于高亮模型匹配的建筑物高度反演方法。通过对建筑物的成像特征进行分析构建出高亮特征模型,建立模型与SAR图像之间的匹配度函数,运用多种群遗传算法对匹配度函数进行优化搜索出最优的高度参数。基于模拟和实测SAR图像的实验结果表明该算法可以用于SAR图像建筑物高度反演,并具有较高的反演精度。 相似文献
17.
18.
通过分析全变分(TV)去噪模型的优缺点,提出了一种新的改进算法。该算法根据最大后验概率(MAP)和马尔可夫随机场(MRF)的理论,推导出一个广义变分的图像去噪模型,并对平衡正则化项和数据保真项的Lagrange乘子λ进行了自适应改进,最后采用了一种鲁棒性好和边缘保持能力强的势函数,结合梯度加权最速下降法和半点格式的数值迭代算法对自适应的广义变分去噪模型寻优求解。实验结果表明,新模型能很好地应用于图像去噪,与现有的算法相比,在峰值信噪比有所提高的同时,图像的主观视觉效果也更好。 相似文献
19.
图像分割是个病态问题,精确化的图像分割需要用户提供足够多的约束信息才能实现.近年来随着马尔可夫随机场吉布斯能量函数最小化图割求解技术的突破,许多国外研究人员开展基于图割方法的交互式图像分割技术的研究.在众多交互式图像分割技术中,由于用户友好性和潜在应用价值,采用矩形框约束的交互式图像分割方法非常吸引人.从超像素马尔可夫随机场模型和网格马尔可夫随机场模型出发,在吉布斯能量函数中引入高阶势能项,高阶势能项的引入使得新的模型既能捕捉细粒度的单个像素信息又能捕捉单像素一定范围内的关联信息,从而提高了矩形框限制条件下的图像分割性能.实验表明:与GrabCut算法相比,所提算法准确性上有一定提高.最后,将所提算法应用在视频对象分割上也取得了不错的效果. 相似文献