共查询到18条相似文献,搜索用时 62 毫秒
1.
以超支化液态聚碳硅烷(LPCS)与固态聚碳硅烷(纯PCS)的共混物作先驱体,熔融纺丝;所得原丝再在热空气气氛中氧化交联,在高温氮气气氛中热裂解,得到碳化硅纤维。研究表明,15%(质量分数)LPCS的加入,可使纯PCS先驱体的纺丝温度,从285℃降低到225℃;纺丝性能和纤维表面质量明显提高;还可以提高氧化交联的效率,降低交联温度,从而减少纤维部分融并、粘结的弊端;虽然纤维的室温力学强度有所降低,但抗氧化性能提高,1400℃氧化交联后,力学性能几乎不变;而纯PCS的力学性能却降为原来的50%。 相似文献
2.
聚碳硅烷纤维的不熔化与SiC纤维制备研究 总被引:7,自引:1,他引:7
以聚二甲基硅烷(PDMS)为原料,在高压釜内高温高压反应制备了聚碳硅烷(PCS)先驱体,经熔融纺丝制备了PCS纤维,研究了在190 C下不同不熔化时间对PCS纤维氧化增重、Si-H键反应程度、凝胶含量、氧含量及最终SiC纤维氧含量与性能的影响.研究表明,在不熔化过程中,PCS结构中的Si-H键与氧反应,在PCS分子间形成Si-O-Si交联结构.随着不熔化时间的延长,PCS纤维发生氧化增重、Si-H键反应程度提高、凝胶含量增加,SiC纤维中氧含量也逐渐增加.在不熔化保温3h,制备的SiC纤维强度可达2.52GPa.随着不熔化时间的进一步延长,SiC纤维氧含量增加,其强度逐渐降低. 相似文献
3.
4.
碳化硅基复合材料是理想的高温结构材料,以聚碳硅烷(PCS)作为碳化硅陶瓷的先驱体,二乙烯基苯(DVB)为交联体,通过改变二者的配比研究了PCS与DVB的交联反应以及PCS/DVB交联体的热裂解过程。通过傅立叶红外光谱详细研究了PCS/DVB配比变化对PCS与DVB的交联反应和交联体微观结构的影响,PCS/DVB配比最终决定碳化硅陶瓷的产率,当PCS/DVB配比为1∶0.5时,经1500℃热裂解后碳化硅陶瓷产率最高,达到63.1%,热裂解产物为纳米碳化硅,粒径为10-40nm。用SEM和XRD研究了不同PCS/DVB配比交联体热裂解产物的微观结构和相组成,通过热重分析研究了PCS/DVB配比为1∶0.5时交联体的热裂解过程,在400-800℃,PCS/DVB交联体失重显著,在800℃热裂解过程基本完成,PCS/DVB配比为1∶0.5时能够制备出纳米碳化硅基复合材料。 相似文献
5.
以聚碳硅烷(PCS)为先驱体, 采用静电纺丝法和先驱体转化法制备SiOC超细纤维, 研究PCS溶液浓度和表面活性剂对纤维形貌和直径的影响。实验结果表明: 添加表面活性剂后, 纤维分布均匀, 串珠现象消失; 通过调节溶液中PCS比例, 纤维直径分布范围为500~900 nm。力学性能测试表明SiOC纤维毡的抗拉强度可达8.88 MPa。SiOC超细纤维毡也展现出优异的热稳定性和抗化学腐蚀性能, 在苛刻环境中可以作为催化剂载体和过滤材料使用。 相似文献
6.
聚碳硅烷热解前的交联对于提高其最终陶瓷产率至关重要.研究了过氧化苯甲酰(BPO)引发液态超支化聚碳硅烷(HBPCS)的交联反应对于陶瓷产率的影响.FT-IR和GPC证实,添加为0.5%~2.0%(质量分数,下同)的BPO,即可在80~140℃下引发HBPCS交联;在考察的实验条件下,提高交联温度、延长反应时间或增加BPO用量,均可提高HBPCS交联程度.BPO用量为2.0%时,HBPCS交联样品在1000℃下的陶瓷产率高达65%,比未加BPO的提高25%. 相似文献
7.
8.
9.
以异丙醇锆(ZIP)为交联剂、聚碳硅烷(PCS)为先驱体,在Ar气氛的保护下通过干法纺丝、热化学交联工艺使PCS从热塑性转变热固性结构.研究了该工艺对PCS纤维质量变化、Si-H反应程度、溶解性及氧含量等性能的影响.实验结果表明:在不熔化过程中,PCS结构中的Si-H键与ZIP反应,在PCS分子间形成Si-O-Zr交联结构,随着交联温度和保温时间的升高,Si-H反应程度和纤维失重率相应提高;在测试范围内最大Si-H反应程度为73.06%,失重率2.678%,氧含量低于2.0%. 相似文献
10.
对聚碳硅烷(PCS)原丝在不同氧化交联温度区间生成的逸出产物进行红外、核磁和GC-MAS分析,并结合交联丝的红外分析,推测氧化交联的机理。结果表明,PCS的氧化交联主要是其Si—H氧化生成Si—OH,后者进而彼此缩合生成Si—O—Si交联结构;氧化交联温度高于150℃时,其部分Si—CH3也开始氧化生成Si—OH并进而交联;同时,在氧化交联过程还发生PCS侧链的热裂解,所形成小分子也通过Si—OH彼此结合,形成较大分子,且其分子量随交联温度的提高而提高。因此,要及时排除氧化交联过程废气,以免逸出产物黏附在纤维表面而导致粘结。 相似文献
11.
12.
综述了聚碳硅烷制备近化学计量比SiC纤维的研究进展,总结了H2在PCS纤维裂解过程中的作用机理,比较了纯H2气氛、分阶段不同气氛、全过程H2/Ar混合气氛条件下得到的SiC纤维的组成和性能变化规律.纯H2气氛800℃以上保温4h,可得到近化学计量比SiC纤维;分阶段气氛下,气氛转换温度为800℃,烧结至1300℃保温1h,可得到近化学计量比SiC纤维;混合气氛下,氢气浓度为60%左右,烧结至1300℃保温1h,可得到近化学计量比SiC纤维.在这些气氛条件下得到的近化学计量比SiC纤维,烧结后的高温力学性能均优于非化学计量比SiC纤维. 相似文献
13.
活性填料铬在聚碳硅烷裂解陶瓷中的应用 总被引:3,自引:0,他引:3
研究了活性填料铬 (Cr)在聚碳硅烷 (PCS)先驱体裂解陶瓷中的应用。研究表明 ,活性填料 Cr能有效降低陶瓷素坯的气孔率。 Cr可与 PCS气态裂解产物和 N2 气氛反应生成新的化合物 ,可明显提高 PCS的陶瓷产率。当 Cr/ PCS为 3 5% vol时 ,坯体的陶瓷产率为 1 0 0 %。在先驱体中引入 Cr能有效地抑制坯体在裂解过程中的收缩。Cr含量越高 ,素坯裂解后的收缩越小。当 Cr/PCS为 4 6% vol时 ,素坯在裂解前后线收缩率为 0 ;由于生成产物的体积效应较大 ,以及与 Si C热膨胀系数的不匹配性 ,导致陶瓷烧成体强度有所下降。用 X-衍射法 (XRD)分析了烧成产物的物相组成 ,扫描电子显微镜 (SEM)观察了陶瓷烧成体的断口形貌。 相似文献
14.
制备了由聚碳硅烷(PCS)为先驱体裂解形成的纳米SiC增强的B4C基复合材料,并与直接球磨混合法制备的纳米SiC增强的B4C基复合材料进行了对比研究.实验结果表明,先驱体法制备的复合材料形成一种复杂的晶内/晶间结构;B4C内部的纳米SiC和Al2O3内部的少量纳米SiC、晶界处的层片状SiC、B4C晶粒内部的SiC亚晶界结构.材料的断裂方式以穿晶断裂为主,形成晶内裂纹扩展路径,增强了材料的韧性.采用PCS为先驱体工艺制备高性能的纳米复相陶瓷,其组织均匀性、致密度和力学性能均优于直接机械混合制备的纳米复合材料. 相似文献
15.
由聚碳硅烷生成纳米SiC颗粒增强B4C基复相陶瓷的结构与性能 总被引:7,自引:0,他引:7
制备了由聚碳硅烷(PCS)为先驱体裂解形成的纳米SiC增强的B4C基复合材料,并与直接球磨混合法制备的纳米SiC增强的B4C基复合材料进行了对比研究。实验结果表明,先驱体法制备的复合材料形成一种复杂的晶内/晶间结构;B4C内部的纳米SiC和Al2O3内部的少量纳米SiC、晶界处的层片状SiC、B4C晶粒内部的SiC亚晶界结构。材料的断裂方式以穿晶断裂为主,形成晶内裂纹扩展路径,增强了材料的韧性,采用PCS为先驱体工艺制备高性能的纳米复相陶瓷,其组织均匀性、致密度和力学性能均优于直接机械混合制备的纳米复合材料。 相似文献
16.
采用加氢烧成法脱碳, 制备了不同自由碳含量的连续SiC纤维。通过元素分析、红外、X射线衍射和拉伸试验等手段对纤维的脱碳过程、元素组成、微观结构和性能进行了分析。结果表明: 加氢烧成通过抑制脱H2反应、促进脱CH4反应而实现有效脱碳, 且氢气浓度越高, 纤维中的碳含量越低。纤维芯部元素分布均匀, 表明该方法可以实现均匀脱碳, 但表面出现很薄的富碳层, 这是纤维经氢气处理后表面吸附氧形成的富氧层在高温烧成时分解所致。自由碳的脱除引起纤维晶粒长大, 密度增加, 孔隙率降低, 电阻率升高, 拉伸强度与拉伸模量提高。近化学计量SiC纤维具有优异的综合性能。 相似文献
17.
强度、模量和柔顺性作为碳化硅(SiC)纤维重要的力学性能受到纤维直径大小的影响, 而制备工艺中的熔融纺丝过程对纤维直径起决定作用。本工作研究了纺丝温度、纺丝压力和卷绕速度对聚碳硅烷(Polycarbosilane, PCS)原纤维直径的影响, 分析了纺丝过程中纤维断裂的原因, 并初步探究了SiC纤维直径与力学性能的关系。结果表明, 在一定范围内降低纺丝温度、降低纺丝压力和提高卷绕速度均能显著减小原纤维的直径。在连续纺丝的前提下, 最优纺丝工艺下得到的PCS原纤维直径为13.5 μm。随着PCS纤维直径由18.3 μm减小至13.5 μm, SiC纤维直径则由13.8 μm减小至9.5 μm, 而SiC纤维的强度与模量分别由1.7、181 GPa提高至2.9、233 GPa, 强度分布更为集中, 柔顺性得到显著提高。 相似文献
18.
将聚碳硅烷(PCS)纤维在1-己炔气氛中进行化学气相交联不熔化处理, 与空气不熔化相比, 能大大降低纤维的氧含量。PCS纤维在1-己炔气氛中反应, 其组成和结构都发生了变化。结果表明, 在1-己炔气氛中, PCS分子的Si—H键的反应程度和纤维的凝胶含量随温度的升高而逐渐增加。反应机制为1-己炔受热引发PCS分子中的Si—H和Si—CH3键断裂生成Si自由基和Si—CH2自由基, 促进PCS分子间形成Si—CH2—Si交联结构, 最终实现不熔化。反应中有少量己基引入到PCS分子结构中。制得的SiC纤维拉伸强度达到2.79 GPa, 氧含量降低到5wt%~6wt%, 并且纤维的耐高温性能明显优于Nicalon纤维。在Ar气中处理至1300℃, 纤维强度保留率约为80%, 处理至1400℃, 纤维的强度保留率为60%, 并且在1300~1600℃的处理过程中, 纤维中β-SiC微晶的晶粒尺寸变化只有2.18nm。 相似文献