首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
以聚酰胺(PA) 6为基体材料,添加二乙基次膦酸铝(ADP)、三聚氰胺氰尿酸盐(MCA)为阻燃剂,通过熔融共混制备无卤阻燃PA6复合材料。采用水平垂直燃烧仪、氧指数测定仪、万能材料试验机以及热重分析仪研究了ADP和MCA用量对无卤阻燃PA6阻燃性能、力学性能、热降解行为的影响,并采用扫描电子显微镜观察了燃烧后炭层的形貌,探讨了ADP与MCA间的协效阻燃作用。结果表明,制备的阻燃PA6复合材料均能达到UL94 V–0阻燃级别;当ADP添加量为18%时,极限氧指数(LOI)可达33.3%;当添加14% ADP时,ADP/MCA复配阻燃体系的LOI值保持在31%以上;MCA对ADP产生协效阻燃作用,MCA的加入使得热分解温度降低,加速了PA6在燃烧时的成炭,改善了炭层结构,并使PA6具有较好的力学性能。  相似文献   

2.
以二乙基次磷酸铝(DEAP),三聚氰胺磷酸盐(MP)和硼酸锌(ZB)为阻燃体系对聚酰胺11(PA11)进行阻燃改性。通过极限氧指数、垂直燃烧测试(UL 94)和锥形量热仪以及热失重分析研究了阻燃体系构成对复合材料阻燃性能与热稳定性的影响,采用红外光谱对残炭成分进行分析。结果表明,添加20 % DEAP时,复合材料的极限氧指数达到28 %,UL 94 测试达到V-2级, 添加13 %DEAP/7 %MP和12.5 %DEAP/7 %MP/0.5 %ZB时,复合材料的极限氧指数可达到29 %,UL 94测试达到V-1级;DEAP对PA11的热释放速率及总热释放量有显著的控制作用,MP和ZB的加入进一步提升其阻燃性能;DEAP/MP/ZB协同使用时残炭的膨胀性、强度及致密性最好;ZB的加入使残炭中的羟基含量增加,应该是ZB的分解所致。  相似文献   

3.
利用溴代三嗪(BrN)协同三氧化二锑(Sb2O3)制备N-Br-Sb阻燃长玻纤增强尼龙6复合材料(BrN/LGF/PA6),通过极限氧指数(LOI)、垂直燃烧(UL94)、热重分析法(TGA)、锥形量热分析(CONE)、红外光谱分析(FTIR)、扫描电镜(SEM)等方法研究了BrN协同Sb2O3对长玻纤增强尼龙6复合材料阻燃性能影响.结果表明,在BrN与Sb2O3的协效阻燃体系添加量为16%时,可使BrN/LGF/PA6复合材料的阻燃等级达到FV-0级,LOI为26.9%.锥形量热与热失重分析均表明,BrN协同Sb2O3能提高BrN/LGF/PA6复合材料的高温下热稳定性,促进PA6分解成炭,从而起到良好的阻燃作用.红外光谱、扫描电镜和锥形量热分析表明,LGF/PA6与BrN/LGF/PA6复合材料热处理后的炭层结构不完全相同,说明了BrN协同Sb2O3不仅在气相发挥阻燃作用,在固相也同样发挥阻燃作用.  相似文献   

4.
以双酚A型苯并嗪(BOZ)为成炭协效剂,二乙基次磷酸铝(ADP)为阻燃剂,通过熔融共混制备了阻燃尼龙66(PA66)复合材料。通过垂直燃烧测试(UL94)、极限氧指数(LOI)、锥形量热(Cone)、SEM以及TGA等考察了复合材料的协同阻燃性能及作用机制。结果表明:BOZ和ADP具有良好的协同阻燃效应。适量BOZ的引入不但可以提高材料的阻燃性能,还可以改善材料的热稳定性,并且对材料的力学性能影响不大。添加占体系质量分数0.3%BOZ和质量分数7.7%ADP时,ADP/BOZ阻燃PA66复合材料的垂直燃烧达到UL94V-0级,LOI达到了32.8%,拉伸强度、弯曲强度分别为81.52、111.11 MPa。阻燃机理研究表明:ADP/BOZ和ADP都是以气相阻燃作用为主的气相和凝聚相协同阻燃机制。  相似文献   

5.
采用硅烷偶联剂(KH560)对三氧化二锑(Sb2O3)进行表面改性处理,并将其协效二乙基次磷酸铝(ADP)应用于聚酰胺6(PA6)阻燃研究。采用傅里叶变换红外光谱和热失重分析对改性Sb2O3进行表征,运用垂直燃烧、氧指数、锥形量热仪、热分析以及扫描电子显微镜和拉曼光谱等对阻燃PA6进行了阻燃性能及机理分析。结果表明,改性 Sb2O3与Sb2O3相比,与ADP具有更好的协同阻燃效应,其作用机制主要是在气相发挥阻燃作用;当ADP含量为8 %,改性Sb2O3含量为2 %时,阻燃PA6复合材料的UL 94等级达到V?0级,极限氧指数达到33.8 %。  相似文献   

6.
以双酚A型苯并噁嗪(BOZ)作为成炭协效剂,与二乙基次磷酸铝(ADP)复配,通过熔融共混制备了阻燃尼龙66(PA66)复合材料。通过垂直燃烧测试(UL94)、极限氧指数(LOI)、锥形量热(Cone)、扫描电镜(SEM)以及热分析(TG/DTG)等考察了复合材料的协同阻燃性能及作用机制。结果表明:BOZ和ADP具有良好的协同阻燃效应。适量BOZ的引入不但可以提高材料的阻燃性能,还可以改善材料的热稳定性,并且对材料的力学性能影响不大。添加0.3wt%BOZ和7.7wt%ADP时,ADP/BOZ阻燃PA66复合材料的垂直燃烧达到UL94 V-0级,LOI达到了32.8%,拉伸强度、弯曲强度分别为81.52、111.11MPa。阻燃机理研究表明:ADP/BOZ和ADP都是以气相阻燃作用为主的气相和凝聚相协同阻燃机制。  相似文献   

7.
利用溴化环氧树脂(BER)协同三氧化二锑(Sb2O3)制备新型卤素阻燃长玻纤增强尼龙6复合材料(FR/LGF/PA6)。通过极限氧指数(LOI)、垂直燃烧(UL94)、热重分析法(TGA)、锥形量热(cone)、红外光谱分析(FTIR)等方法研究了BER协同Sb2O3对长玻纤增强尼龙6复合材料阻燃性能影响。结果表明:在BER与Sb2O3的协效阻燃体系质量分数为12%时,可使FR/LGF/PA6复合材料的阻燃等级达到FV-0级,LOI为23.9%,且力学性能表现为最佳。锥形量热与热失重分析均表明:BER协同Sb2O3能提高FR/LGF/PA6复合材料的热稳定性,缓解PA6分解速率,从而起到良好的阻燃作用,成功地解决了玻纤增强材料燃烧时的"烛芯效应"问题。红外光谱和锥形量热分析表明:LGF/PA6与FR/LGF/PA6复合材料热处理后的炭层结构不完全相同,说明了BER协同Sb2O3不仅在气相发挥阻燃作用,在固相也同样发挥阻燃作用。  相似文献   

8.
为提高三聚氰胺聚磷酸盐(MPP)和二乙基次膦酸盐(OP)协效阻燃玻纤(GF)增强尼龙66(PA66)的综合性能,引入少量的无机阻燃剂硼酸锌(ZB)作为协效剂,系统研究了不同添加量的ZB对阻燃材料的阻燃性能、热稳定性、力学性能和白度的影响。结果表明,当MPP和OP的总添加量为15%,复配0.5%的ZB时,阻燃GF增强PA66的垂直燃烧阻燃等级达到UL94 V–0级,且热释放总量由MPP/OP体系的15.4 k J/g降为13.7 k J/g;ZB的引入促进了连续、致密炭层的形成,增强了凝聚相阻燃;ZB增强了阻燃材料的热稳定性,ZB复配量为1.0%的阻燃材料的初始降解温度提高到了301℃,有效避免了加工过程中的降解;当ZB添加量为1.0%时,阻燃材料的拉伸强度和缺口冲击强度分别为100.9 MPa和4.22 k J/m~2,均优于未添加阻燃剂的纯GF增强PA66;同时,样品的白度得到了明显提升,有利于阻燃GF增强PA66的工业化应用。  相似文献   

9.
利用溴化聚苯乙烯(BPS)协同三氧化二锑(Sb2O3)制备新型卤素阻燃长玻璃纤维(LGF)增强尼龙6复合材料(BPS/LGF/PA6),通过极限氧指数(LOI)、垂直燃烧(UL94)、热重分析法(TGA)、锥形量热(cone)等方法研究了BPS协同Sb2O3对LGF/PA6复合材料阻燃性能影响。结果表明,在BPS与Sb2O3的协效阻燃体系的质量分数为16%时,可使BPS/LGF/PA6复合材料的阻燃等级达到FV-0级,LOI为25.2%。而且,BPS协同Sb2O3能提高BPS/LGF/PA6复合材料的热稳定性,缓解PA6分解速率,从而起到良好的阻燃作用,成功地解决了玻纤增强材料燃烧时的"烛芯效应"问题。  相似文献   

10.
通过极限氧指数测定、垂直燃烧实验和锥形量热分析研究了二丙基次膦酸铝(ADPP)和氢氧化镁(MH)对尼龙6(PA6)的复合阻燃作用。结果表明:ADPP与MH对PA6无协同阻燃作用,ADPP复配少量的MH(质量分数10%)阻燃PA6的LOI和垂直燃烧级别变化不大,总热释放量(THR)和最高热释放速率(PHRR)略有增加,但热稳定性有明显改善。残余物分析结果表明,复合少量的MH略增加了材料的成炭性,但炭层结构变得比较松散,因而对ADPP阻燃PA6的影响不大。而随着MH用量增加,成炭性明显下降,因而降低了ADPP对PA6的阻燃作用。  相似文献   

11.
以甲基膦酸二甲酯(DMMP)、10-(2,5-二羟基甲苯)-10-氢-9-氧杂-10-磷酰杂菲-10-氧化物(DOPO-HQ)、可膨胀石墨(EG)和氢氧化铝(ATH)构建了四元阻燃复合体系,并通过热失重分析仪(TG)、锥形量热仪、极限氧指数分析仪等研究了其在硬质聚氨酯泡沫(RPUF)中的阻燃行为。结果表明,四元阻燃体系能够在较宽温度区间内发挥逐级释放的协同阻燃效应;DOPO-HQ能够与EG/DMMP/ATH三元阻燃体系形成加合阻燃效应,使得RPUF复合材料的极限氧指数(LOI)提升至30.8%;与采用EG/DMMP/ATH三元阻燃体系的RPUF复合材料相比,采用加入DOPO-HQ的四元阻燃体系的RPUF复合材料的热释放速率峰值(PHRR)、总热释放量(THR)、总烟释放量(TSR)均有所下降,残炭率得到了进一步提升,说明DOPO-HQ与EG/DMMP/ATH所构建的四元阻燃体系在成炭性方面具有协同效应;此外,通过扫描电子显微镜(SEM)对残炭进行表征,验证了四元阻燃体系在凝聚相中能够发挥优异的成炭阻隔效应,并能够在燃烧的初期、中期和末期发挥逐级释放阻燃效应。  相似文献   

12.
张泽  贾垚  崔永岩 《中国塑料》2021,35(12):45-50
采用熔融共混法,以二乙基次膦酸铝(ADP)为主阻燃剂,聚磷酸铵(APP)为协效阻燃剂,对丙烯腈?丁二烯?苯乙烯共聚物(ABS)实现了良好的阻燃抑烟改性。利用极限氧指数测定仪、烟密度测试箱和锥形量热测试仪对复合材料的燃烧性能进行了测试,通过扫描电子显微镜、差示扫描量热仪等分析表征了复合材料的微观结构和热性能。结果表明,当ABS/ADP/APP质量比为100∶16∶4时,复合材料的极限氧指数(LOI)可提高到29 %,烟密度等级下降到68.5,火点指数(FPI值)提高到0.215 s/(kW·m-2);复合材料在燃烧过程中会分解产生磷氧自由基,抑制基体燃烧的链式反应,并在材料表面形成大量细小空穴、膨胀疏松的炭层,取得了气相阻燃和凝聚相阻燃之间的良好协效。  相似文献   

13.
以来自自然界储量第二的木质素作为膨胀型阻燃剂的基体,通过接枝氮、磷元素成功合成碳源、酸源、气源三位一体的木质素基膨胀型阻燃剂(Lig-T),实现了良好的阻燃性能。将Lig?T按照不同含量添加到环氧树脂(EP)中制备EP/Lig-T复合材料,以锥形量热测试考察复合材料的热稳定性能和阻燃性能,并重点考察复合材料在接近真实火灾事故时的热释放和烟释放规律。结果表明,当Lig-T含量为20 %(质量分数,下同)时,复合材料的热释放速率峰值为1 374 kW/m2、热释放总量为41.63 MJ/m2、烟释放总量为1 634 m2/m2,与EP参比试样的数值相比,均呈现下降的趋势,燃烧结束的残炭率从4.26 %增至10.01 %。基于气相和凝聚相的协效阻燃机理,木质素作为膨胀型阻燃剂的碳源使得复合材料在高温条件下具备更好的成炭效果,在燃烧过程中形成稳定且致密的炭层结构,在实现高效阻燃的同时减少有毒烟气的释放,降低火灾的危害。  相似文献   

14.
通过极限氧指数测定(LOI)、垂直燃烧试验和锥型量热分析研究了六苯氧基环三磷腈(HPTCP)对聚碳酸酯/丙烯腈-苯乙烯-丁二烯共聚物(PC/ABS)合金的阻燃作用。结果表明:HPTCP对PC/ABS具有良好的阻燃效果。当添加量为15%时,阻燃PC/ABS的LOI为25.0%,阻燃等级达FV-0,并且与未阻燃PC/ABS相比,燃烧时的热释放速率、总热释放量、最高热释放速率、平均热释放速率,平均有效燃烧热和质量损失明显降低;热重分析表明,HPTCP对PC/ABS合金的热稳定性影响较小。热重和残余物分析结果表明,HPTCP主要是通过凝聚相产生阻燃作用,HPTCP的添加可有效抑制PC/ABS的分解,促进它成炭,形成膨胀性炭层,该炭层通过隔热、隔氧及阻止PC/ABS分解产物的挥发而产生阻燃作用。  相似文献   

15.
将可膨胀石墨(EG)与P-N膨胀阻燃剂(IFR)复合阻燃EVA树脂,通过氧指数(OI)、垂直燃烧测试(UL94)、锥形量热仪(CONE)研究了EG与IFR复合阻燃EVA的协同效应。结果表明:阻燃剂总添加量为30 phr,随着其中EG含量的增加,OI呈先增加后下降趋势,确定EG:IFR=1:1为最佳配比,OI达到36.6%,UL94为V-0级;EG与IFR复合阻燃EVA,热释放速率曲线呈现"前单峰型",为凝聚相阻燃机理;燃烧后形成的炭层结构较致密,表现出一定的协同作用。  相似文献   

16.
为了探究聚合物弹性体耐磨性及微观形态,本文以沙柳液化产物与MDI反应生成聚氨酯为预聚体,EVA/PU进行接枝共聚形成聚合物弹性体,并利用扫面电镜探针显微镜等对聚合物弹性体进行了测试分析。结果表明:当含EVA为10%时材料的硬度达到最大,磨耗率也是最低的,分子的结晶度增大,两相的相容性也达到最佳状态。对EVA/PU弹性共体拉伸断裂面的扫面分析,发现随着EVA的加入量的增大,断面呈现由脆性断裂向韧性断裂过渡,并且在断裂的微观区出现了明显塑性变形。在扫描探针显微图下可以看到EVA/PU之间发生的接枝共聚现象,分子变小,同时分子的高度增加。这就说明EVAL中的游离羟基与PU预聚体发生了接枝反应。  相似文献   

17.
采用熔融插层法分别制备高抗冲苯乙烯/有机蒙脱土(HIPS/OMMT)复合材料和四溴双酚-A/三氧化二锑(TBBPA—Sb2O3)体系阻燃的HIPS/OMMT复合材料,透射电镜研究表明,有机蒙脱土均匀地分散于HIPS基体当中,形成了插层复合结构,锥形量热仪和氧指数仪研究表明:与纯的HIPS相比,HIPS/OMMT复合材料的阻燃性和抑烟性有所提高,但阻燃性的提高幅度较有限:与仅添加OMMT时的HIPS/OMMT复合材料相比,添加相同量OMMT时TBBPA—Sb2O3体系阻燃的HIPS/OMMT复合材料的热释放速率(HRR)和热释放速率峰值(PHRR)均有所降低,氧指数有所增加,且随TBBPA—Sb2O3阻燃剂添加量的增加阻燃性能的提高越明显,但TBBPA—Sb2O3的加入会导致聚合物燃烧过程生烟速率和生烟量的显著增加.因此此类阻燃剂的加入量不宜过高。  相似文献   

18.
对阻燃聚丙烯(PP)进行了力学性能测试,利用差示扫描量热仪、热失重分析仪、锥形量热仪和体视显微镜对阻燃PP的各项性能进行了进一步的表征。结果表明,随着磷-氮阻燃剂(IFR-3)用量的增大,PP的拉伸强度和冲击强度先增大后减小;阻燃剂IFR-3能使PP的熔融温度和结晶温度均提高,同时也使PP的分解温度降低,残余物增大;随着阻燃剂IFR-3用量的增大,PP的极限氧指数不断增大;当阻燃剂IFR-3用量为30份时,厚度为3.2 mm的PP试样垂直燃烧性能达到UL 94 V-0级,当阻燃剂IFR-3用量为35份时,厚度为1.6 mm的PP试样达到UL 94 V-0级;阻燃剂IFR-3能够显著降低PP的热释放速率和生烟速率。  相似文献   

19.
孟鑫  王小龙  公维光  金谊 《中国塑料》2022,36(9):96-104
以聚磷酸铵(APP)为核,壳聚糖(CS)、氯化铁和埃洛石(HNT)为壳,以水为溶剂,通过自组装的方式制备了“三源一体”壳核型阻燃剂(APP@CS@HNT和APP@CS-Fe@HNT,分别简写为ACH和ACFH),并将其用于提升聚乳酸(PLA)的阻燃性能。通过扫描电子显微镜、热重分析仪等对ACH和ACFH的组成及结构进行了分析,然后对PLA的阻燃性能进行表征。结果表明,PLA/15%ACFH(质量分数,下同)的阻燃性能优于纯PLA和PLA/15%ACH,PLA/15%ACFH的极限氧指数(LOI)最高,提升到29.5%,且UL 94达到V-0级;相较于纯PLA,PLA/15%ACFH的最大热释放速率(PHRR)和总热释放量(THR)分别下降了33.5%和22.0%,残炭量提高了12.5%;ACFH主要发挥凝聚相阻燃效果,燃烧过程能促进PLA基体形成大量连续、致密的炭层,起到抑制氧气和热量扩散的阻隔作用。  相似文献   

20.
硅锡协同阻燃尼龙6   总被引:2,自引:0,他引:2  
采用氯化亚锡(SnCl2)/聚氨丙基苯基倍半硅氧烷(PAPSQ)复合阻燃剂阻燃改性尼龙6(PA6)。测定了阻燃PA6的氧指数(LOI),利用锥形量热仪测定了阻燃PA6的释热速率、总释热量、有效燃烧热等多种阻燃参数,并用扫描电镜(SEM)观察了阻燃PA6残炭的形貌。实验表明,当SnCl2用量为4%,PAPSQ用量为1%时,PA6的LOI为31%,PA6的释热速率、总释热量和有效燃烧热均明显下降,PAPSQ对SnCl2有协同阻燃效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号