首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过气压烧结制备添加质量分数5%TiO2的Si3N4陶瓷并制成刀具,研究了TiO2对其显微组织、力学性能和切削性能的影响,并与未添加TiO2烧结Si3N4陶瓷作对比。结果表明:添加TiO2烧结Si3N4陶瓷主要由长棒状与等轴状的β-Si3N4晶粒组成,并伴有均匀分布的TiN相,与未添加TiO2烧结Si3N4陶瓷相比,晶粒得到细化,硬度上升而断裂韧度略有下降;在连续切削灰铸铁过程中,添加TiO2的Si3N4陶瓷刀具具有更长的切削寿命(有效切削长度为2 410 m),并且保持了刃口的完整性,切削后黏着磨损碎片较小。  相似文献   

2.
在1 850℃下采用无压液相烧结工艺制备TiC陶瓷,研究了烧结助剂Al2O3-Y2O3(二者物质的量比为1.5)质量分数(0,6%,8%,10%)对TiC陶瓷结构和性能的影响。结果表明:添加烧结助剂后TiC陶瓷中存在TiC相、YAM(Y4Al2O9)相和YAG(Y3Al5O12)相;随着烧结助剂质量分数由0增加到10%,陶瓷的相对密度由94.50%增加到97.86%,开口气孔率由0.77%下降到0.21%,YAM相与YAG相增多并逐渐发生聚集,断裂韧度、维氏硬度与抗弯强度均先升高后降低,当烧结助剂质量分数为6%时,断裂韧度和维氏硬度最大,分别为6.2 MPa·m1/2和19 GPa,当烧结助剂质量分数为8%时,抗弯强度最大,为524 MPa;陶瓷的电阻率均在1.00×10-6~2.00×10-6Ω·m,烧...  相似文献   

3.
采用真空热压烧结方式制备了Al2O3/ZrO2梯度复合陶瓷刀具材料,并对ZrO2含量及梯度结构层厚比进行了优化。层厚比为2.0的AZE20梯度复合陶瓷刀具材料维氏硬度为(18.7±0.33) GPa,抗弯强度为(937±28.5) MPa,断裂韧性为(8.2±0.32) MPa·m1/2,相比最佳ZrO2含量的均质复合陶瓷刀具材料AZ20,维氏硬度、抗弯强度和断裂韧性分别增加了22%、37.8%和43.8%。梯度结构的设计使表层形成残余压应力,晶粒得到一定程度的细化,更多的ZrO2晶粒因残余压应力尺寸稳定在t相ZrO2晶粒尺寸。在复合材料断口形貌中发现,其断裂方式为表层穿晶断裂和中间层沿晶断裂的结合,这种混合断裂方式使刀具整体力学性能得到提高。  相似文献   

4.
以ZrO2、Al2O3和铝粉作为结合剂,通过六面顶压机在高温(1 300~1 600℃)高压(5.5 GPa)条件下烧结制备聚晶立方氮化硼(PCBN)陶瓷,研究了烧结温度对陶瓷物相组成、力学性能以及加工离心铸铁时切削性能的影响。结果表明:不同温度烧结PCBN陶瓷的主晶相均为cBN、m-ZrO2、t-ZrO2、Al2O3、AlN和ZrN,结合相颗粒均匀地分散在cBN基体上;随着烧结温度的升高,cBN与结合相的结合更加紧密,陶瓷的相对密度、硬度、抗弯强度和断裂韧度增大;当烧结温度为1 600℃时,陶瓷的综合力学性能最好,硬度、抗弯强度和断裂韧度分别达到32.87 GPa,850.3 MPa,5.1 MPa·m1/2;当烧结温度为1 400℃和1 500℃时,PCBN陶瓷刀具在切削离心铸铁棒总长度为10 km时,其后刀面磨损量仅分别为171,166μm,切削性能较好。  相似文献   

5.
采用放电等离子烧结技术制备了TiB2-B4C复相陶瓷材料,研究了烧结温度和保温时间对TiB2-B4C陶瓷刀具材料力学性能和微观组织的影响。研究表明,当烧结温度为1700℃,保温5min时,陶瓷刀具材料的微观组织均匀,晶粒相对细小,致密度较高,材料的组织缺陷最少,综合力学性能较优。此时,抗弯强度598MPa,硬度22.8GPa,断裂韧性约为6.8MPa·m1/2。  相似文献   

6.
以Y2O3稳定纳米ZrO2粉、TiO2粉、TiN粉、炭黑和水溶性酚醛树脂为原料,采用无压烧结方法制备Ti(C,N)/ZrO2陶瓷复合材料,研究了Ti(C,N)质量分数(25%~40%)对其微观结构和性能的影响。结果表明:Ti(C,N)/ZrO2陶瓷复合材料由t-ZrO2和Ti(C,N)两相组成;随着Ti(C,N)含量的增加,Ti(C,N)颗粒逐渐出现团聚现象,但当Ti(C,N)质量分数增加至40%时,Ti(C,N)相分布又变得较均匀;随着Ti(C,N)含量的增加,陶瓷复合材料的开口气孔率先增大后减小,硬度、抗弯强度和断裂韧度先降低后升高;当Ti(C,N)质量分数为40%时,陶瓷复合材料的综合性能最好,其开口气孔率、硬度、抗弯强度、断裂韧度分别为0.73%,14.4 GPa, 354 MPa, 5.8 MPa·m1/2。  相似文献   

7.
以α-Si3N4、β-Si3N4、MgO、Y2O3为原材料,利用以水为分散介质的水基干压成型工艺在不同温度(1 750,1 850℃)下烧结制备高导热氮化硅陶瓷,研究了不同烧结温度下陶瓷的结构、力学性能和热导率,并与以无水乙醇作为分散介质的非水基干压成型氮化硅陶瓷进行对比。结果表明:陶瓷的晶粒均呈长柱状,并且零散的粗大晶粒周围分布着较多的细长晶粒,呈双模式组织结构;1 750,1 850℃烧结温度下水基干压成型陶瓷的抗弯强度分别为555.7,747.5 MPa,断裂韧度分别为8.14,8.25 MPa·m1/2,均略低于非水基干压成型陶瓷,相对密度分别为99.00%,99.58%,平均晶粒尺寸分别为1.06,1.27μm,热导率分别为65.70,75.54 W·m-1·K-1,均略高于非水基干压成型陶瓷。  相似文献   

8.
采用微波烧结技术快速制备一种力学性能良好的TiB2基金属陶瓷刀具材料,研究了纳米HfC含量对金属陶瓷力学性能和微观组织的影响,分析了微观组织和力学性能之间的关系,揭示了纳米HfC对金属陶瓷刀具材料的增强补韧机理。结果表明:加入纳米HfC可显著提高材料的断裂韧度和抗弯强度,含20wt.%HfC的金属陶瓷断裂韧度和抗弯强度相较于未加HfC的断裂韧度和抗弯强度分别提高了36.7%和45.4%,断裂韧度高达10.68MPa·m1/2±0.30MPa·m1/2;随着纳米HfC含量的增加,TiB2基体晶粒由粗大、无规则形状向细小、矩形形状转变,平均晶粒尺寸可缩小到原来的1/2.6;TiB2-TiC-HfC金属陶瓷的主要增强补韧机理为细晶强化、颗粒弥散强化、固溶强化、裂纹偏转和钉扎效应。  相似文献   

9.
氧化铝陶瓷作为制造切削刀具的优良材料,较低的韧性限制了其应用。选用不同含量的碳化硅(2%,5%和10%)加入氧化铝颗粒中,经球磨后,利用真空热压烧结法(1400℃,20MPa)制备Al2O3/SiC复合材料。从X射线衍射(XRD)、致密度、硬度、弯曲强度以及断裂韧性等方面对材料性能进行了分析。结果发现,随着SiC的加入,Al2O3/SiC复合陶瓷硬度和抗弯强度增大。当SiC质量分数为5%时,其硬度和弯曲强度最大,最大值分别为1071.98HV和379.83MPa,此时断裂韧性也最大,为6.39MPa·m1/2。  相似文献   

10.
张岩  黄传真  刘含莲 《中国机械工程》2023,34(3):352-358+368
采用热压烧结工艺,以Ti(C, N)为添加相,以Mo、Ni和Co为金属相,成功制备了氮化碳(C3N4)基陶瓷刀具材料,测量了其断裂韧度、抗弯强度和维氏硬度,分析了其微观组织。结果表明,在烧结温度为1600℃、保温时间为45 min和烧结压力为32 MPa的工艺条件下,Ti(C, N)质量分数为35%、Ni-Co质量分数为8%的C3N4基陶瓷刀具材料力学性能最优。合适的Ti(C, N)含量能细化C3N4晶粒、提高烧结密度、改善力学性能,合适的Ni-Co含量能使微观组织细小均匀。  相似文献   

11.
以Al2O3-(W,Ti)C为基体层,Al2O3-TiC为夹层,采用热压烧结工艺制备了力学性能较好的贝壳仿生陶瓷刀具材料,对材料的层数、层厚比和界面形状等叠层结构参数进行优化,测试材料的力学性能,并对其微观组织进行分析。分析结果表明,当层数为3、层厚比为3时,材料有较好的综合力学性能。在层间引入不同的界面形状,刀具材料的力学性能相较于无界面形状的刀具材料得到了提高,在所制备的试样中,最佳的断裂韧性、维氏硬度和抗弯强度分别为7.16MPa·m1/2±0.04MPa·m1/2,20.40GPa±0.07GPa和981.72MPa±10.86MPa。  相似文献   

12.
以TiC0.7N0.3、WC、碳、镍和钼粉为原料,通过放电等离子烧结技术制备了含质量分数0,2%(Ni-Mo),10%(Ni-Mo)黏结剂的TiC0.7N0.3基金属陶瓷,研究了黏结剂含量对金属陶瓷微观结构和力学性能的影响。结果表明:TiC0.7N0.3基金属陶瓷具有典型的黑芯-灰环结构,随着Ni-Mo黏结剂含量的增加,金属陶瓷的相对密度增大,芯相TiC0.7N0.3比例降低,环相(Ti, W,Mo)(C,N)比例增加,TiC0.7N0.3颗粒尺寸减小,断裂韧度增大,硬度先升高后基本不变。含质量分数10%(Ni-Mo)黏结剂的金属陶瓷具有优异的综合力学性能,其硬度达到17.14 GPa,断裂韧度达到6.76 MPa·m1/2。  相似文献   

13.
以Al2O3、TiC粉体为原料,采用无压烧结技术制备了TiC-Al2O3导电陶瓷复合材料,研究了TiC体积分数(30%~45%)对陶瓷复合材料微观结构和性能的影响。结果表明:TiC-Al2O3导电陶瓷复合材料主要由Al2O3和TiC两相组成;随着TiC含量的增加,陶瓷复合材料的相对密度降低,开口气孔率增大,当TiC体积分数为30%时,相对密度最大,开口气孔率最低,分别为95.5%和3.0%;陶瓷复合材料中导电相TiC均连接为网状结构,随着TiC含量的增加,TiC所形成的网状结构越发完整,陶瓷复合材料的硬度先升高后降低,电阻率和断裂韧度均呈降低趋势,抗弯强度增大;当TiC体积分数为45%时,陶瓷复合材料的抗弯强度最高,电阻率最低,分别为361 MPa和6.95×10-6Ω·m。  相似文献   

14.
张晶  王文雪  孙峰  张明帅  张伟儒 《轴承》2023,(11):67-72
以TiN作为导电添加相,成功制备出Si3N4基防静电陶瓷球,研究了TiN对Si3N4基陶瓷球致密化、显微结构、力学性能及电阻率的影响。结果表明:大量TiN的加入阻碍了Si3N4的致密化,降低了Si3N4基陶瓷的抗弯强度、维氏硬度和电阻率,提高了其断裂韧性;与加入微米级TiN的试样相比,加入相同含量纳米级TiN试样的各项性能更优;纳米级TiN质量分数30%的陶瓷球不仅具有防静电功能,且综合力学性能最佳,其维氏硬度、断裂韧性和压碎强度分别为(1 482±15)HV10,(8.2±0.1)MPa·m1/2,(417±10)MPa。  相似文献   

15.
利用溶液共混法制备不同质量分数(10%~40%)微米级Al2O3颗粒改性环氧树脂复合材料,研究了Al2O3微粒含量对复合材料导热和导电特性的影响。结果表明:当Al2O3微粒质量分数为10%和20%时,微粒在基体中分散良好,随着Al2O3微粒含量增加,微粒相互接触并出现团聚结块现象;随着Al2O3微粒质量分数由10%增加到40%,复合材料在室温下的热导率由0.30 W·m-1·K-1增加到1.11 W·m-1·K-1,玻璃化转变温度由115.44℃升高到122.89℃,线膨胀系数由56.86×10-6 K-1降至34.86×10-6 K-1,电阻率由4.27×1010Ω·cm降...  相似文献   

16.
为了探究不同金属元素对氧化铝/碳化硅复合材料的增韧作用,利用热压烧结法(1400℃,20MPa),通过添加Co, Ni, Ti三种元素到氧化铝/碳化硅复合材料进行XRD(X射线衍射)、维氏硬度、弯曲强度和断裂韧性等试验。研究结果表明,加入Co, Ni, Ti后制备的三种复合材料硬度分别提升至5.64GPa, 7.39GPa, 8.29GPa;弯曲强度分别提升到389.2MPa, 871.3MPa, 987.5MPa;断裂韧性分别提升到7.75MPa·m1/2,7.9MPa·m1/2,8.9MPa·m1/2。  相似文献   

17.
黄兆权  黄瑶  姜知水 《机电信息》2023,(8):48-51+55
采用MgO-Y2O3作为烧结助剂,利用光固化成形技术、结合气压烧结方法制备了高致密化程度和高性能的Si3N4陶瓷。研究了Mg O-Y2O3烧结助剂总掺量对光固化成形Si3N4陶瓷的相对密度、物相组成、显微结构、热学和力学性能的影响。研究结果表明,随着Mg O-Y2O3烧结助剂总掺量的增加,光固化成形Si3N4陶瓷的相对密度和平均晶粒尺寸逐渐增大,总掺量为10wt%时,达到最大值,分别为99.01%和0.82μm;而热导率和抗弯强度均呈先增大后降低的变化趋势,并在8wt%达到最大值,分别为59.58 W·m-1·K-1和915.54 MPa。  相似文献   

18.
以Tb4O7粉、Dy2O3粉和TiO2粉为原料,采用高能球磨、冷等静压和高温烧结工艺制备了Tb2TiO5-30%(质量分数)Dy2TiO5中子吸收材料,研究不同球磨时间(0~48 h)下混合粉体的微观结构,不同烧结温度(1 200~1 400℃)与时间(1~96 h)下烧结块体材料的微观结构、热物理性能和耐腐蚀性能。结果表明:混合粉体的晶粒尺寸随球磨时间的延长而减小,球磨12 h后即可获得均匀混合的纳米晶粉体,纳米晶混合粉体在1 300℃烧结96 h获得了具有高致密度正交晶体结构Tb2TiO5-Dy2TiO5块体材料;该块体材料在500℃的热导率和热膨胀系数分别为2.2 W·m-1·K-1和5.8×10-6 K-1,在360℃/18.6 MPa去离子水中的腐蚀速率变化很小,平均腐蚀速率为0.18 mg·dm-2·h-1,该块体材料具有较高的热导率、较低的热膨胀系数以及较好的耐高温水腐蚀性能,是控制棒用中子吸收材料较优的候选材料。  相似文献   

19.
以SnO2粉、CuO粉、Nb2O5粉、Cr2O3粉为原料,采用粉末冶金技术烧结制备(98.95-x)SnO2-1CuO-0.05Nb2O5-xCr2O3(x=0,0.01,0.02,0.03,0.05,物质的量分数/%)压敏电阻,研究了Cr2O3掺杂量对该压敏电阻微观结构和电气性能的影响。结果表明:随着Cr2O3掺杂量的增加,烧结试样的相对密度、收缩率、平均晶粒尺寸均先增大后减小,当Cr2O3物质的量分数为0.02%时相对密度和收缩率最高,Cr2O3物质的量分数为0.01%时晶粒尺寸最大,粒径分布最均匀;随着Cr2O3掺杂量增加,SnO2  相似文献   

20.
制备了掺杂质量分数分别为0.5%,2.0%Y2O3的钨基复合材料,研究了其显微组织,通过不同温度(25~800℃)下的拉伸试验分析了其近韧脆转变温区的变形特性。结果表明:2种复合材料均存在由轧制变形导致的大量位错,Y2O3颗粒对位错运动起到钉扎作用;Y2O3掺杂质量分数为2.0%的复合材料的晶粒更细小,发生韧脆转变的温度更低,在300~400℃拉伸时发生半脆性行为,断口区域位错密度在3.8×1015~3.9×1015 m-2,在600~800℃下发生明显塑性变形,位错密度增加至6.2×1015~6.8×1015 m-2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号