共查询到20条相似文献,搜索用时 15 毫秒
1.
小干扰稳定问题对电力系统安全稳定的影响日益突出。采用样本学习的思路建立从稳态运行信息到关键振荡模式的映射模型,为大电网振荡特性的快速预测和评估提供了新的技术路径。采用图卷积网络,并引入边卷积的设计来考虑输电通道潮流分布的影响,建立了小干扰稳定评估的边图卷积网络模型(edgegraphconvolutionalnetworksforsmall-signal stability assessment,EGCN-SSA)。采用卷积增强技术改善网络退化现象,并建立多任务学习框架,同时预测多模式的振荡频率和阻尼比。在IEEE10机39节点上的算例和模型对比验证了所提出模型的性能以及对拓扑变化的适应能力。 相似文献
2.
3.
准确、快速的暂态稳定评估对电网安全运行至关重要。但现有方法未充分挖掘电网暂态数据的时空特性信息,限制了模型的评估性能。文中提出了一种基于时间卷积网络(TCN)和图注意力网络(GAT)的暂态稳定评估方法。该方法仅以量测母线电压幅值和相角数据作为输入,凭借GAT可以处理图数据并建立电网拓扑连接关系的优点和TCN特有的因果空洞卷积运算特性,自动从暂态数据中提取出空间特征和时间特征,进而实现对系统暂态稳定性的准确评估。此外,采用改进的焦点损失函数作为模型训练目标,可以动态适应训练过程中模型对难易样本的判别界限且自适应处理样本不均衡问题,减少了对失稳样本错分类的现象,同时还提高了全局准确率。IEEE 39和IEEE 145节点系统仿真结果表明,所提方法在响应时间上具有优越性,并且在拓扑变化和数据存在噪声情况下都具有较强的泛化性和鲁棒性,满足在线评估的准确性与快速性要求。 相似文献
4.
5.
以往基于深度学习的输电线路故障诊断,依赖数字信号处理技术提取故障特征。为了改进前述方法,引入了图深度学习理论,提出了一种基于图注意力网络(GAT)的智能故障诊断方法。将原始三相电流电压信号转化为图数据,利用多个图注意力层自动提取特征信息,从而建立了数据从输入端到输出端之间的映射关系,实现输电线路端到端的故障诊断。在400 kV三相输电线路和IEEE13总线电网系统上验证该方法的准确性和有效性,分别对五种短路故障和无故障情况设置不同初始相角、过渡电阻和故障位置进行仿真分析。结果表明,该方法故障诊断准确率达到9975%以上,与现有几种智能故障诊断算法对比其性能最优。同时,该方法在不同白噪声下依然保持较高的故障识别率,具有良好的鲁棒性和泛化能力,为电力输电线路诊断技术提供了一定的研究思路。 相似文献
6.
大规模双馈风电场经串补并网系统易产生次同步振荡,若无法及时发现振荡现象并准确告警,将严重威胁系统安全稳定运行。次同步振荡预警是依据电力系统在线量测数据,判断系统振荡稳定性,为调度人员提供实时可靠的预警信息。针对现有次同步振荡在线监测无法实现事前预警的问题,提出一种基于图注意力网络(graph attention network,GAT)的次同步振荡预警方法。首先,分别从风电场侧和电网侧筛选次同步振荡关键影响因素,以减少输入特征信息的冗余;其次,基于多头注意力机制构建多头图注意力网络,考虑不同风电场间以及风电场与电网之间耦合影响的差异,实现不同风电场之间的次同步振荡特征聚合;最后,在搭建的多风电场汇集并网系统上进行次同步振荡稳定性预警,验证了所提方法的准确性和抗干扰性。 相似文献
7.
随着电力系统规模的增大,通过传统数值方法计算系统特征值来进行小干扰稳定评估已无法满足实时分析的要求。因此,提出了一种基于深度学习(卷积神经网络)的电力系统小干扰稳定评估方法。该方法以广域测量系统可监测变量作为模型的输入,关键特征值作为输出,对输入数据和输出数据进行相应处理后,利用深层架构对其映射关系进行分析;并针对大系统维数较高、训练速度较慢的问题,采用了离散余弦变换和图形处理器并行技术。算例结果表明,在不考虑控制参数变化的情况下,经过历史数据的离线训练后,该方法能够较准确地计算出系统的关键特征值。 相似文献
8.
为进一步提高电力系统暂态电压稳定评估模型的特征提取能力和模型在系统拓扑结构发生变化时的适应性,提出一种将改进的卷积神经网络与迁移学习相结合的方法。首先,在卷积神经网络的卷积层后插入卷积块注意力模块,对输入的数据从通道和空间两个独立的维度依次提取特征,提高卷积神经网络对系统暂态电压状态的识别能力。然后,将该模块与微调技术相结合,提高模型在系统拓扑结构改变时的在线更新速度。最后,算例分析验证了所提模型的有效性。 相似文献
9.
随着电网的扩大与新能源比例的增加,电网的不确定性和随机性因素增加,危及系统安全运行,寻找出电网中的脆弱性关键环节来保障电网运行时的可靠性就显得尤为重要。针对当前传统电网脆弱性关键环节辨别方法识别速度慢、难以满足电网实际运行要求的问题,提出了基于改进图注意力网络算法(improved graph attention network, IGAT)的电网脆弱性关键环节辨识方法。首先,结合复杂网络理论和电网实际运行数据建立评价指标集。其次,利用IGAT挖掘出电网运行时的各项指标与脆弱性关键环节之间的映射关系,建立脆弱性关键环节辨识模型,并且考虑到训练准确性和效率等需求,对原始的图注意力网络进行优化。再次,通过仿真得到原始数据集,对辨识模型进行训练、验证和测试。最后,利用所述模型应用于改进的IEEE 30节点系统和实际电网中,结果表明所提方法具有可行性,且准确性和速度优于传统方法,有一定的工程利用价值。 相似文献
10.
11.
为了进一步提高电力系统暂态稳定的预测精度及给出更精细化的评估结果,将深度学习与电力系统暂态稳定相结合,根据故障切除后发电机功角"轨迹簇"特征,提出一种基于集成不同结构的深度置信网络(DBN)的精细化电力系统暂态稳定评估模型。该模型的基分类器DBN能够有效地利用深层架构所具有的特征提取能力,充分挖掘出输入特征与暂态稳定评估结果之间的非线性映射关系。在新英格兰10机39节点系统上的实验结果表明,该方法不仅优于浅层学习框架,也比部分深度学习模型的性能更加优越。除此之外,该集成DBN算法不仅有较高的预测精度,而且可以有效地评估系统的稳定裕度和不稳定程度等级;在部分同步相量测量装置信息缺失以及含有噪声时,表现出较强的鲁棒性。 相似文献
12.
为了提高深度置信网络的评估性能,提出一种基于稀疏降噪自动编码器和深度置信网络相结合的暂态稳定评估方法。首先,构建一组对系统暂态变化敏感且维数与系统规模无关的原始输入特征;其次,通过稀疏降噪自动编码器的无监督学习过程提取输入特征,用得到的权值和偏置初始化深度置信网络;最后,采用“预训练-微调”2种学习方法训练深度置信网络,获得原始输入特征与系统暂态稳定结果之间的映射关系。与采用随机初始化受限玻尔兹曼机的传统深度置信网络相比,本文提出的改进评估方法在一定程度上克服了由于随机初始化导致评估准确率无法达到最优的弊端。在新英格兰10机39节点系统上的仿真结果表明,该方法比常用的机器学习算法和深度置信网络有更好的评估性能,仿真结果还证明了本文所提方法具有良好的特征提取能力。 相似文献
13.
针对电力系统暂态稳定评估中,电力系统同步相量测量装置(PMU)量测数据在采集和传输过程可能存在噪声问题,以及由于暂态稳定与失稳样本不平衡,导致基于数据驱动的暂态稳定评估模型训练的倾向性和误判后果严重问题,提出基于改进深度残差收缩网络(IDRSN)的电力系统暂态稳定评估方法.首先将底层量测电气量构建成特征图形式作为模型输... 相似文献
14.
为提高短期用户负荷预测精度,提出了一种基于自适应图注意力网络(adaptive graph attention network, AGAT)的短期用户负荷预测模型。首先,针对用户负荷存在规模小、波动性强的问题,通过门控机制结合多个大小不同的扩张卷积核来构造时序特征提取层,从多个尺度上提取用户负荷的高维时序特征。同时,考虑到不同用户负荷间潜在的动态相关性,使用马氏距离构造动态图学习层,生成动态图邻接矩阵。然后,采用图注意力网络根据动态图邻接矩阵将用户负荷的高维时序特征进行信息汇聚。最后,通过全连接层输出用户负荷预测值。为验证AGAT模型的有效性,采用UCI电力负荷数据集进行预测实验,分别与多种基线模型比较。实验结果表明,所提模型预测指标优于各基线模型,有助于提高短期用户负荷预测精度。 相似文献
15.
随着人工智能技术的发展,基于数据驱动的深度学习方法可兼顾在线评估的快速性与准确性。通过分析电力系统的电压时序信息,构建暂态电压稳定裕度指标。基于实时获取的广域测量信息,选择代表潮流水平的稳态信息、代表故障冲击程度的故障瞬间信息以及代表故障持续进展的滑动信息构建半固定半滑动的异构样本集,基于深度残差网络构建暂态电压稳定评估模型,分别输出系统的暂态电压稳定评估结果、各监测母线的暂态电压稳定评估结果以及电压稳定裕度信息,为在线监控提供指导。在计及高压直流输电和风电接入影响的改进中国电科院36节点系统进行仿真验证,结果表明,该方法无需接收保护设备的故障切除时间信息,可在故障切除时刻之前给出高精度的评估结果,具有较高的实时性和准确性。 相似文献
16.
现代电力系统海量量测数据为电力系统暂态稳定评估提供可靠的数据基础,与此同时,数据信息挖掘成为研究焦点,暂态稳定分析中不平衡故障样本以及多特征电气量时间序列数据中所蕴藏的信息仍有待深入挖掘。为此,该文提出一种结合注意力机制的长短期记忆网络(long short term memory network with attention,LSTMA)方法,用以深入挖掘暂态稳定评估样本中所蕴藏的信息。在离线训练环节,以长短期记忆网络为基础分类器,引入Attention注意力机制引导模型学习样本中关键特征,并对损失函数进行改进,以此强化对不平衡样本的学习能力;在线应用环节,在目标域小样本条件下采用迁移学习方法更新成型的离线LSTMA模型,并对比不同迁移学习策略对模型性能影响,经过迁移学习建立的新运行点下的改进LSTMA模型评估精度有效提高,训练时间大幅减少,所得出的迁移学习策略确定方法有利于实际应用环节快速决策。研究在IEEE39节点和IEEE300节点系统上进行实验,验证了所提方法的有效性。 相似文献
17.
人工智能方法在电力系统暂态稳定评估研究中已经取得了一定的成果。常规深层网络普遍被视为“黑盒”模型,这限制了智能算法在实际工程应用中的可信赖性;同时,常规算法对电力系统时序信息的提取能力不足。针对以上问题,构建基于Transformer编码器的多阶段暂态稳定评估方法,其多阶段预测能够有效降低失稳漏判率。和常规算法相比,Transformer模型具有良好的可解释性,其注意力机制引导模型自适应识别并聚焦于关键特征,在一定程度上揭示深层网络内部工作决策过程。此外,采用多时刻信息构建特征空间,Transformer通过注意力机制实现全局感受野,使模型快速捕获电力系统前后时刻间的状态依赖。IEEE-39节点系统上的仿真结果表明,所提方法相比常见数据驱动模型具有更高的暂稳评估准确性,呈现出良好的可解释性,并在数据污染时依然维持较高的性能。 相似文献
18.
19.
20.
对于电力系统暂态稳定评估而言,在故障清除后的早期阶段,临界样本间的特征差异不明显,预测准确率低。随着时间推移,准确率提高,但难以保证评估的及时性。针对暂态稳定评估的评估准确性与及时性之间的矛盾,提出了基于集成学习的时间自适应电力系统暂态稳定评估方法。首先,通过EasyEnsemble算法对不平衡数据进行采样,训练出多个不同评估时刻的集成长短期记忆网络分类器,输出样本在不同评估时刻的稳定性预测结果。其次,将评估时刻进行划分,提出了多阶段阈值分类规则,自适应调整阈值,对样本预测结果进行可信度评估。最后,预测结果评估为不可信的样本交由下一评估时刻的模型继续判断,直到可信度达到阈值后输出。在IEEE 39节点系统的仿真结果表明,所提方法相较于其他时间自适应方法具有更优的评估性能,在样本不平衡的情况下该方法实现了更好的修正效果。 相似文献