首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本研究探索了光悬浮区熔法制备Al2O3/Er3Al5O12(ErAG)和Al2O3/Yb3Al5O12(YbAG) 定向凝固共晶陶瓷。在10 mm/h的抽拉速率下成功获得了凝固组织均匀、内部无裂纹或孔洞的高质量共晶陶瓷。通过高分辨三维X射线衍射仪研究了Al2O3和RE3Al5O12在三维空间的分布与组织结构; 利用电子背散射衍射技术分析了定向凝固末期Al2O3和RE3Al5O12两相的晶体学择优取向和相界面关系。力学性能表征结果显示, Al2O3/ErAG和Al2O3/YbAG具有优异的力学性能, 二者的维氏硬度分别为(13.5±0.4)和(12.8±0.1) GPa;断裂韧性分别为(3.0±0.2)和(3.2±0.1) MPa·m1/2。  相似文献   

2.
采用激光区熔高温度梯度快速定向凝固技术从熔体中直接制备Al2O3/Y3Al5O12(YAG)共晶自生复合陶瓷,以研究其在超高温度梯度(1.0×106 K/m)下的快速凝固组织特征及与激光工艺参数的关系,并对其力学性质进行分析.研究结果表明:凝固组织强烈地受激光扫描速度与功率密度的影响,当二者匹配时,Al2O3相和Y3Al5O12(YAG)相呈现均匀一致,连续分布的层状耦合共晶结构,共晶间距细小(1~2 μm),且随扫描速度的增大逐渐减小;所制备的Al2O3/Y3Al5O12(YAG)共晶陶瓷硬度高达19.5 GPa,断裂韧性达到3.6 MPa·m1/2.  相似文献   

3.
在580℃和1.5 MPa的条件下用热压烧结的方法制备出了一系列Al2O3/Al-steel mesh-Al层状复合材料,该复合材料是由两层铝箔和一层丝网构成的"sandwich"结构,Al-steel mesh-Al为中间夹层。结果显示,Al2O3/Al的界面粘结紧密并且没有反应发生。在Al/steel的界面处出现了金属间化合物,该化合物改善了Al与丝网之间的结合性能。相比于纯Al2O3,Al2O3/Al-steel mesh-Al层状复合材料强度差别不大,但具有更高的断裂韧性和断裂功。裂纹扩展分析认为层状复合材料断裂韧性和断裂功的提高得益于裂纹钝化和捕获,界面分离,裂纹桥接和Al-steel mesh-Al的塑性变形等机制。落锤冲击结果表明,Al2O3/Al-steel mesh-Al层状复合材料具有较好的抗冲击性能。  相似文献   

4.
以孔隙规则排列的Al2O3多孔陶瓷为骨架,制备了多孔Al2O3陶瓷/Al2O3超微粉/环氧树脂新型复合材料。研究了三维连通陶瓷骨架对复合材料力学性能和高温尺寸稳定性的影响。研究结果表明,新型复合材料具有更优越的室温和高温力学性能。当陶瓷骨架含量为16.8%时,其室温的抗弯强度、抗弯模量、抗压强度和抗压模量分别为115.5MPa、3.6GPa、170.2MPa、2.4GPa。在120℃压缩时,其抗压强度、抗压模量分别为47.8MPa、0.9GPa。新型复合材料具有良好的高温尺寸稳定性,在180℃尚未发现变形。  相似文献   

5.
陶瓷膏体3D打印挤出成型工艺中,膏体具有低粘度,高稠度和流变性是陶瓷膏体配制需要保证的关键性能,对坯体的密度、成形精度等有较大影响,进一步影响陶瓷器件的成品率。陶瓷膏体的流变性受较多因素影响,本研究通过单因素实验和正交实验研究了固相含量、分散剂含量、pH值和球磨时间对陶瓷膏体流变性能的影响,获得了适应于3D打印挤出成型工艺流变性的A12O3陶瓷膏体,并利用得出的膏体进行打印成型实验和性能分析。研究结果表明:随着固含量的增加,膏体的粘度逐渐增加,流变性能下降。相反,随着分散剂含量和球磨时间的增加,膏体的粘度先减小后增加,而流变性能先增加后减小。另外,随着膏体pH值的升高,粘度先增大后减小,而流变性能先减小后逐渐增大。当固相含量、分散剂含量、pH值和球磨时间分别为51vol.%、0.3vol.%、3和36h时,可以获得具有较好流变性能的陶瓷膏体。  相似文献   

6.
采用共沉淀法制备Al2O3/3Y-TZP纳米粉体,粉体压制后通过微波和常规烧结制备Al2O3/3Y-TZP陶瓷,并研究两种烧结方法对Al2O3/3Y-TZP陶瓷相对密度、抗弯强度、断裂韧性和断口形貌等的影响。结果表明,共沉淀法制得的Al2O3/3Y-TZP纳米粉体晶粒细小、均匀,近似球形,尺寸为40~60nm;随烧结温度的升高,两种烧结方法制备的陶瓷试样相对密度、抗弯强度和断裂韧性均先升高后降低;与常规烧结相比,Al2O3/3Y-TZP陶瓷的微波烧结温度明显降低,时间显著缩短,且晶粒更细小,相对密度、抗弯强度和断裂韧性显著提高。  相似文献   

7.
采用真空烧结固相反应法,分别制备了不添加和添加烧结助剂(正硅酸乙酯TEOS和MgO)的Pr:LuAG(Pr:Lu3Al5O12)陶瓷,研究发现添加烧结助剂烧制的Pr:LuAG陶瓷在可见光区的直线透过率可达~80%,不添加烧结助剂的陶瓷光学透过率降低(可见光区~70%,2 mm厚),但光输出提高了5倍(为1196 pe/MeV),衰减快分量比例可达73%,能量分辨率8.4%。将Pr:LuAG陶瓷加工成1.9 mm×1.9 mm×1.0 mm的陶瓷阵列组装探测器模块,用4×4陶瓷阵列单元实现了二维散点图成像,所成散点图清晰可辨。经过平台测试,相同耦合条件下本实验制备的Pr:LuAG陶瓷成像质量优于商用BGO(Bi4Ge3O12)单晶,结果显示Pr:LuAG陶瓷有望应用于PET(Positron Emission Tomography)级别核医学成像系统。  相似文献   

8.
利用微波均相沉淀法成功制备了纳米级Y3Al5O12粉体。利用XRD技术分析了Y3Al5O12前驱体煅烧过程的物相变化,利用TEM对Y3Al5O12前驱体形貌进行了表征。结果表明:微波辐照能够在低尿素含量(25:1)的条件下,合成单相Y3Al5O12粉体,大大降低了尿素的用量;纯Y3Al5O12相的形成温度有了很大程度的降低,使得合成的前驱体在900℃下煅烧直接生成Y3Al5O12单相粉体;同时发现在密闭条件下的微波特殊效应与非密闭条件下相比具有更好的效果。  相似文献   

9.
片式CaCu3Ti4O12陶瓷由于其巨介电效应,用于制备多层陶瓷片式电容具有重大意义。通过水基流延法并在不同的烧结温度下制备的片式CaCu3Ti4O12陶瓷具有优异的介电性能。其中在1080℃下烧结的样品在保持巨电容率(98605)的同时,降低了介电损耗,其值只有0.028,远低于其他报道的损耗值。同时,测试了CCTO陶瓷薄片的复阻抗图谱,讨论了CCTO陶瓷的特殊的电学性能。实验结果表明,通过流延成型制备的CCTO陶瓷薄片在保持巨电容率的同时具有很低的介电损耗,这为CCTO陶瓷在微电子工业上的应用提供了可能性。  相似文献   

10.
本文采用热压工艺制备TiC和Al_2O_3共同补强Y-TZP基复相陶瓷,研究了复相陶瓷的相组成、力学性能及显微结构.发现复相陶瓷的高温强度得到显著提高,1000℃时,组成为30vol%TiC-(25vol%Al2O3/1.8Y-TZP)复相陶瓷抗弯强度高达614MPa.TiC颗粒补强机制在高温下发挥了重要作用.  相似文献   

11.
12.
作为超高温结构材料,共晶氧化物陶瓷的力学性能和显微组织密切相关。采用高温熔凝法制备Al_2O_3/ZrO_2/YAG共晶陶瓷体,研究熔体温度和结晶种子对凝固组织影响规律,运用经典形核机制和Jackson-Hunt共晶生长模型探讨了凝固组织的演变机理。研究表明,随着熔体温度升高(1750~2000℃),凝固体物相组成从α-Al_2O_3,c-ZrO_2和YAG转变为α-Al_2O_3,c-ZrO_2和亚稳相YAP。凝固组织依次经历:非共晶Al_2O_3/ZrO_2/YAG、不规则共晶Al_2O_3/ZrO_2/YAG、纳米纤维状共晶Al_2O_3/ZrO_2/YAG和复杂粗大的亚稳复合陶瓷Al_2O_3/ZrO_2/YAP。分析表明,凝固组织的演变源于异质晶核点不断钝化导致形核过冷度和凝固路径改变,所以合理选择熔体温度和结晶种子是共晶组织调控的关键。  相似文献   

13.
通过在含有钆、镓、铝离子的硝酸混合溶液中滴加氨水,共沉淀生成Ce掺杂的Gd_3(Al,Ga)_5O_(12)(GAGG)前驱体,并采用TG/DTA对GAGG前驱体进行表征。分别在800℃、850℃、900℃、1000℃、1100℃及1200℃对GAGG前驱体进行煅烧处理,采用XRD对GAGG粉体的物相进行表征,结果显示制备出纯相的GAGG粉体。采用SEM对GAGG粉体的颗粒大小以及微观形貌进行观察。GAGG粉体的荧光谱图显示在560 nm处有一个很强的发射峰。在900℃煅烧处理的GAGG粉体所烧结的陶瓷具有最高的透明度。  相似文献   

14.
Nd:Lu_2O_3材料由于具有高热导率、低声子能量和优异的光学特性而成为非常有前景的高功率固体激光器用的增益介质。但Lu_2O_3单晶的熔点超过2400℃,难以生长,而Lu_2O_3陶瓷既能在低温下制备,又具有与晶体相当的光学性质和激光性能从而备受关注。本研究制备了高透明的Nd:Lu_2O_3陶瓷并对其光学性质和激光性能进行探究。以共沉淀法制备的纳米粉体为原料,采用真空烧结结合热等静压(HIP)两步烧结法制备了1.0at%Nd:Lu_2O_3透明陶瓷。对制备的粉体、素坯和陶瓷的微结构进行了表征:HIP后处理的陶瓷平均晶粒尺寸是724.2nm。厚度为1.0mm的1.0at%Nd:Lu_2O_3透明陶瓷在1100 nm处的直线透过率是82.4%,样品在806 nm处的吸收截面为1.50×10~(–20) cm~2,而根据荧光光谱计算得到的发射截面为6.5×10~(–20) cm~2。分别在878.8和895.6 nm波长激发下, 1.0at%Nd:Lu_2O_3透明陶瓷~4F_(3/2)→~4I_(11/2)跃迁的平均荧光寿命均为169ms。当输出耦合镜的透过率TOC=2.0%时,退火后的1.0at%Nd:Lu_2O_3透明陶瓷获得了最大输出功率为0.47 W的准连续(QCW)激光输出,斜率效率为8.7%。本研究成功制备了显微结构均匀、高透明度的1.0at%Nd:Lu_2O_3陶瓷,并展示了其在固体激光增益介质领域的广阔应用潜力。  相似文献   

15.
通过添加适量的Al_2W_3O_(12)负热膨胀粉体来优化碳化硅颗粒增强铝基(SiC_p/Al)复合材料的热膨胀系数。实验采用固相法制备负热膨胀性能的Al_2W_3O_(12)粉体,并按10%,20%,30%的体积比添加至SiC_p/Al复合粉体中,利用粉末冶金工艺制备SiC_p/Al_2W_3O_(12)/Al复合材料。实验结果表明:制备的复合材料组织分布均匀,致密度良好。室温到200℃内,在Al基体质量分数不变的前提下,Al_2W_3O_(12)的加入有效降低了复合材料的热膨胀系数。  相似文献   

16.
用Al_2O_3作为界面修饰剂,通过反应烧结,在SiC颗粒之间形成莫来石界面,制备SiC预制件,采用无压熔渗法制备3D-SiC/Al互穿式连续结构复合材料。基于正交实验研究了Al_2O_3添加量、预制件烧结时间、熔渗温度和熔渗时间对3D-SiC/Al复合材料抗弯强度和热导率的影响。实验结果表明,Al_2O_3添加量对复合材料抗弯强度和热导率影响显著,复合材料获得最大抗弯强度344 MPa和热导率165 W/(m·K)的制备工艺为:氧化铝添加量2.0%(原子分数),预制件烧结时间2h,熔渗温度950℃,熔渗时间1h。  相似文献   

17.
在α-Al_2O_3(0001)表面研究了N,N'-二戊基-3,4,9,10-苝二甲酰亚胺(PTCDI-C_5)薄膜形貌与基底温度之间的关系.在背景真空度低于6×10-7Pa的超高真空腔中,利用分子束外延方法在基底上生长标称厚度为0.6 nm的PTCDI-C_5薄膜,薄膜生长过程中的基底温度分别被控制在25℃、37℃和61℃.生长结束后,利用原子力显微镜(AFM)轻敲模式在大气环境下对薄膜形貌进行离线表征.AFM图像显示在Al_2O_3基底表面,PTCDI-C_5分子形成岛,而且PTCDI-C_5岛的排列与基底温度之间呈现一定关系.本文实验条件下,在25℃和37℃之间存在一个基底温度阈值.在薄膜生长过程中,当基底温度低于此温度阈值时,PTCDI-C_5岛在基底表面随机排列;相反,当基底温度高于此温度阈值时,PTCDI-C_5岛沿着Al_2O_3(0001)表面的台阶边缘分布.  相似文献   

18.
以聚丙烯隔膜为基材,单面涂覆2.0~3.0μm的Al_2O_3/P(MMA-BA)复合涂层制备改性隔膜。对隔膜的穿刺强度、透气性、热稳定性、耐热收缩性、表面形貌、吸液性和电化学性能进行表征,发现复合涂层中含有大量Al_2O_3能提高隔膜的热稳定性和耐热收缩性,而且涂层的多孔结构有利于电解液润湿隔膜、并提高离子电导率,组装的电池的循环与倍率性能也有显著提升。  相似文献   

19.
本文在纺织纤维基材表面采用二次溅射沉积法制备了Cu/Al_2O_3复合薄膜,利用扫描电镜(SEM)、X射线能谱仪(EDX)和矢量网络分析仪对室温环境下存放3600h的复合薄膜的表面形貌、元素含量以及屏蔽效能进行了测试,并与相同工艺条件下制备的纯Cu薄膜进行了对比分析。结果表明:与纯Cu薄膜结构的不稳定性相比,由于复合薄膜表层Al_2O_3薄膜的结构稳定性和致密性,Cu/Al_2O_3复合薄膜在保证高屏蔽性能的前提下,具有整体结构的稳定性,表现出了良好的抗氧化性能。  相似文献   

20.
为了降低CaCu_3Ti_4O_(12)陶瓷的介电损耗,保持高介电常数,采用共沉淀法制备CaCu_3Ti_4O_(12)陶瓷.研究了前驱粉料的热分解过程、煅烧后粉料的物相结构、陶瓷的显微结构和介电性能,并考察了Ca、Cu混合溶液pH值对CaCu_3Ti_4O_(12)陶瓷性能的影响.结果表明:当Ca、Cu混合溶液pH值为5.1时,制备的CaCu_3Ti_4O_(12)陶瓷介电损耗最低,而且能保持高介电常数.在室温下,频率为1kHz时,介电常数为1.4×10~4,介电损耗为0.037.通过对陶瓷性能对比,发现共沉淀反应中各元素的沉淀比例,陶瓷的微观结构和介电性能均受该pH值的影响.因此,Ca、Cu混合溶液的pH值对降低CaCu_3Ti_4O_(12)陶瓷介电损耗、保持高介电常数影响很大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号