首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 375 毫秒
1.
亓鹏  朱丁  陈云贵 《功能材料》2012,43(5):657-659
采用湿法混料及高温热解法制备了锂离子电池用硅/石墨/碳复合负极材料,并研究了不同配方的复合材料结构及电化学性能。研究发现,硅含量为20%(质量分数)时,复合材料首次可逆容量为865mAh/g,循环30次后仍为757mAh/g,容量保持率可达88%,大大改善了硅基材料作为锂离子电池负极材料的电化学性能。  相似文献   

2.
锂离子电池用高容量负极材料普遍存在首次不可逆容量高、循环性能差等问题. 本文采用高温固相法制备了硅铝/碳锂离子电池负极材料, 制备出的复合负极材料的比容量远高于目前锂离子电池普遍使用的中间相碳微球, 循环寿命则优于同粒度的硅单体为活性中心的硅碳复合材料. Al引入Si/C复合材料中, 有效抑制了材料的首次嵌锂深度,且减缓了电压滞后现象. 制备的复合负极材料首次可逆容量达到600mAh/g, 首次充放电效率在85\%以上, 25次循环后容量仍保持90%以上.  相似文献   

3.
锂离子电池多孔硅/碳复合负极材料的研究   总被引:1,自引:0,他引:1  
以商业化多晶硅粉为原料, 采用金属银催化剂诱导化学腐蚀的方法制得三维多孔硅材料。通过优化腐蚀条件, 得到孔径约为130 nm, 比表面为4.85 m2/g的多孔硅材料。将多孔硅和PAN溶液混合球磨并经高温烧结后在多孔硅表面包覆上一层致密的无定形碳膜, 从而制得多孔硅/碳复合材料作为锂离子电池的负极材料。3D多孔硅结构可以缓解电化学嵌/脱锂过程中材料的体积效应, 无定形碳膜层可有效改善复合材料的导电性能。电化学性能测试表明, 该多孔硅/碳复合负极材料电池在0.4 A/g的恒电流下, 首次放电容量3345 mAh/g, 首次循环库伦效率85.8%, 循环55次后容量仍保持有1645 mAh/g。并且在4 A/g的倍率下, 容量仍维持有1174 mAh/g。该方法原料成本低廉, 可规模化生产。  相似文献   

4.
李旭  孙晓刚  陈玮  王杰 《复合材料学报》2018,35(11):3219-3226
为提高硅基锂离子电池的电化学性能,制备了一种多微孔结构的集流体。以纸纤维为基体,多壁碳纳米管(MWCNTs)为导电剂,制得MWCNTs/纸纤维复合多孔导电纸代替铜箔作为负极集流体。MWCNTs负载中空Si微球复合材料作为负极活性材料。FESEM分析显示,中空Si-MWCNTs复合活性物质均匀分布在MWCNTs构建的三维导电网络的孔隙中,从而保证了材料的结构稳定性和化学稳定性。所制备的中空Si-MWCNTs/纸纤维复合锂离子电池具有良好的循环稳定性和较高的比容量,同时具有可逆性。在0.02 C的电流密度下,循环30次后其比容量稳定在1 300 mAh/g。在3 C的大电流密度下,比容量仍可稳定保持在330 mAh/g。恢复0.25 C充放电后,容量恢复为1 150 mAh/g。  相似文献   

5.
设计和制备了一种基于类石墨烯片的三维多孔碳负载纳米锗作为高容量锂离子电池负极材料。所制备的复合负极中纳米锗颗粒大小为50~500nm,均匀负载在由类石墨烯片构成的三维多孔导电网络中,有效地避免了热处理下Ge颗粒长大的问题。相比于纯Ge负极,复合负极具有优异的电化学性能:0.2C倍率下首次放电比容量高达1530.49mAh/g,循环80周后为910.32mAh/g,为纯Ge负极的1.89倍;2C倍率下放电比容量为881.28mAh/g,为纯Ge负极的2.01倍。  相似文献   

6.
徐立环  汪佳男  苏畅 《功能材料》2023,(12):12091-12098
硅碳材料作为锂离子电池负极材料具有广阔地发展前景。利用水热法和高温碳化法制备了蔗糖碳/硅复合材料(SC/Si),并在此基础上与石墨复合制备出具有石墨导电骨架结构的蔗糖碳/硅-石墨复合材料(SC/Si-Gr),并探究其作为锂离子电池负极材料电化学和电池性能。结果表明,蔗糖碳均匀包覆在纳米硅表面,形成的蔗糖碳/硅复合材料的电化学性能和电池性能随着蔗糖碳含量增加而提高。随着石墨的引入,构建的SC/Si-Gr三元复合材料的电化学性能得到进一步提升。当蔗糖:硅:石墨投料质量比为1∶1∶0.5时,形成的SC/Si-Gr(1∶1∶0.5)复合材料,在电流密度为0.1 A/g条件下,第三圈稳定之后的放电比容量为1 005.1 mAh/g;循环100圈之后放电比容量为819 mAh/g,充放电库伦效率保持在98%左右。在1 A/g大电流密度下,平均放电比容量为437.91 mAh/g。这归功于石墨的加入形成有效的导电骨架结构,提高了首次循环库伦效率,加速锂离子的传输速率,使蔗糖碳/硅-石墨复合材料呈现出良好的循环稳定性和充放电倍率性能。  相似文献   

7.
硅理论比容量高, 放电平台低, 是商业化锂离子电池石墨负极的替代材料之一, 但是其充放电循环中体积变化大, 容量衰减迅速, 制约了其商业化使用。本研究通过一步法制备了具有核壳结构的硅@碳/硅氧化物(Si@C/SiOx), 将其作为锂离子电池负极材料。采用SEM、TEM、XRD、XPS等手段对所制备材料的微观形貌、结构以及组分进行了分析, 并对其进行了相关的电化学测试。结果表明, Si@C/SiOx核壳材料比Si@C核壳材料具备更优良的电化学性能。在200 mA/g电流密度下, 循环45次后, Si@C的容量保持率为60.2%; 而当C/SiOx作为Si核外壳时, 200 mA/g电流密度下, 循环45次后, Si@C/SiOx比容量值为787.2 mAh/g, 容量保持率提高到87.3%。这主要是由于C与SiOx复合后, 外壳的机械强度大于碳壳, 能够较好地缓冲Si体积膨胀产生的巨大应力, 从而保证结构的完整性, 提高了硅基负极材料的商业化应用的可能性。  相似文献   

8.
以Al-20Si合金为原料制备多孔硅粉体材料和多孔硅/石墨烯复合材料,并将其用作锂离子电池的负极材料。采用盐酸浸蚀合金的方法制备多孔硅粉体材料,通过借助超声向硅基材料中分别添加不同含量的石墨烯(0,5%,10%,15%,20%,25%)制备多孔硅/石墨烯复合材料。实验结果显示,在多孔硅基材料中添加10%石墨烯的电化学性能最好,首次充放电容量为2 552 mAh/g,最后稳定在540 mAh/g。首次充放电效率为78.5%,循环至第5次后,后续充放电过程中效率维持在98%左右。石墨烯添加量超过10%后。随着添加量的增加性能逐渐下降。石墨烯的加入会使充放电比容量有所降低,但会使硅的循环稳定性增加。  相似文献   

9.
NiO作为过渡金属氧化物代表,具有能量密度较高、成本低的优点,在锂离子电池负极材料的应用中引起了广泛关注。通过海藻酸钠与金属离子的自主交联反应,以及碳化、氧化过程,制备了低成本的多孔纳米NiO/C复合材料。得到的复合材料中,NiO纳米颗粒分散均匀且被石墨化碳层包覆,并嵌入多孔相互连通的碳基体中,在提升复合材料整体导电性的同时抑制了活性材料在电化学反应中的体积膨胀。将其用作锂离子电池负极材料时,NiO/C复合材料在0.1,1 A/g的电流密度下分别具有608.2,307.2 mAh/g的比容量,并且在0.1 A/g电流密度下经过100圈循环后仍保持448 mAh/g的比容量,显示出优良的循环稳定性。优良的电化学性能充分显示出NiO/C复合材料在锂离子电池负极材料中的应用潜能。  相似文献   

10.
锂离子电池硅基负极材料的研究进展   总被引:1,自引:1,他引:0  
硅负极材料具有很高的理论比容量(4200mAh/g),但充放电过程中巨大的体积变化导致其循环性能很差,同时较低的电导率以及与常规电解液的不相容性等因素限制了硅作为负极材料在锂离子电池中的应用。因此,目前大部分研究人员都致力于解决其循环性能差的问题。综述了近年来改善硅基负极材料性能的最新进展,指出了硅基材料作为锂离子电池负极材料的研究前景。  相似文献   

11.
通过真空驱动自组装法及蒸汽处理得到结构疏松的硅/碳纳米管/石墨烯自支撑负极材料(Si/CNTs/GP)。纳米硅颗粒(50 nm)为活性物质, 均匀分布在石墨烯片层结构中间; 石墨烯作为碳基体, 通过自组装构筑形成二维导电网络; 碳纳米管(CNTs)具有超高导电性和良好的力学强度, 它通过吸附作用均匀分布在石墨烯基体上形成导电的支撑网络结构。经过蒸汽处理后, 石墨烯层间距明显增大, 层与层之间不再是紧密堆叠的结构, 而是形成一种疏松、褶皱、内部空隙丰富的片层结构。Si/CNTs/GP负极材料中丰富的内部空穴和贯穿孔洞, 提供了材料很高的比表面积, 能有效提高电解液对材料的浸润性, 极大缩短了离子传输距离。同时这些内部空穴也有效缓冲硅充放电时的体积膨胀, 提高了材料的结构稳定性和电化学性能。该负极材料在4 A/g的大电流密度下容量维持在600 mAh/g, 表现出良好的大电流循环稳定性能。  相似文献   

12.
The requirement for silicon-based anode material is growing and has received attentions. Silicon is a promising anode material for lithium-ion batteries due to the high theoretical capacity. However, the high volumetric variability of silicon has led to severe chalking and rapid capacity degradation. To ameliorate these problems, a carbon-covered silicon material with a 3D conductive network structure was prepared employing glucose and phytic acid as carbon sources. When acted as the anode for Lithium-ion batteries, the prepared composite material delivered 1612 mAh/g in the first cycle and approximately 600 mAh/g at 0.1 A/g after 200 cycles. In addition, even at 5 A/g, a high capacity of 503 mAh/g was reached, and when recovered to 0.1 A/g, the capacity of 878 mAh/g was maintained.  相似文献   

13.
Sn-based materials are considered as a kind of potential anode materials for lithium-ion batteries (LIBs) owing to their high theoretical capacity. However, their use is limited by large volume expansion deriving from the lithiation/delithiation process. In this work, amorphous Sn modified nitrogen-doped porous carbon nanosheets (ASn-NPCNs) are obtained. The synergistic effect of amorphous Sn and high edge-nitrogen-doped level porous carbon nanosheets provides ASn-NPCNs with multiple advantages containing abundant defect sites, high specific surface area (214.9 m2·g−1), and rich hierarchical pores, which can promote the lithium-ion storage. Serving as the LIB anode, the as-prepared ASn-NPCNs-750 electrode exhibits an ultrahigh capacity of 1643 mAh·g−1 at 0.1 A·g−1, ultrafast rate performance of 490 mAh·g−1 at 10 A·g−1, and superior long-term cycling performance of 988 mAh·g−1 at 1 A·g−1 after 2000 cycles with a capacity retention of 98.9%. Furthermore, the in-depth electrochemical kinetic test confirms that the ultrahigh-capacity and fast-charging performance of the ASn-NPCNs-750 electrode is ascribed to the rapid capacitive mechanism. These impressive results indicate that ASn-NPCNs-750 can be a potential anode material for high-capacity and fast-charging LIBs.  相似文献   

14.
锂离子电池已广泛应用于各种便携式电子设备及新能源汽车等领域, 但随着电子设备的不断更新换代及电动汽车的快速发展, 理论比容量较低的传统石墨负极(372 mAh/g)已无法满足社会的需求。基于此, 本工作设计并制备了一种Zn基金属有机物框架(ZIF-8)衍生的三维网络状硅碳(Si@NC)复合材料用于锂离子电池性能研究。首先对纳米硅表面进行化学改性,然后在改性的硅表面原位生长ZIF-8小颗粒(Si@ZIF-8), 最后对Si@ZIF-8碳化得到Si@NC复合材料。研究表明, Si@NC复合材料的三维网络状多孔结构既可以很好地限制硅的体积膨胀, 又能极大地提升材料的电导率, 展现出稳定的循环性能和良好的倍率性能, 在5 A/g的大电流下能保持760 mAh/g的放电比容量。与商业三元正极材料组装的全电池也表现出较好的性能, 在0.4C (1C =160 mA/g)下循环50圈依然可以保持60.4%的比容量。这些研究结果说明该Si@NC复合材料具有较好的应用前景。  相似文献   

15.
采用溶剂热法制备单分散的Fe3O4微球, 对其表面进行包覆SiO2和氨基化处理, 再与氧化石墨烯复合, 化学还原后得到Fe3O4-W-RGO复合材料。SEM和TEM照片显示, SiO2均匀包覆在Fe3O4微球(直径~440 nm)表面形成Fe3O4@SiO2核壳微球, 紧密束缚于RGO纳米片表面。XRD测试结果表明Fe3O4微球结晶度好、纯度高。电化学性能测试结果表明: 在0.01~3.00 V电压范围和0.1C倍率下, Fe3O4-W-RGO复合材料的首次放电容量为1246 mAh/g, 100次循环后保持830 mAh/g; 在2C倍率下放电容量达到484 mAh/g, 具有较好的倍率性能和循环性能。  相似文献   

16.
以两种糖类化合物(葡萄糖与水溶性淀粉)为碳源,以SnCl4.5H2O为锡源用一步水热法制备了SnO2@C复合物。使用X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、N2吸脱附法和透射电镜(TEM)表征其组成和微观结构,并采用恒电流充放电测试、循环伏安法(CV)和电化学阻抗谱(EIS)表征其作为锂离子电池负极材料的电化学性能。结果表明,糖类前驱体衍生的热解炭和直径为4~5 nm的SnO2纳米点生成了稳定的复合结构,炭基体的缓冲作用和材料纳米化缓解了SnO2的体积膨胀效应,使材料的结构稳定性和电化学性能提高。由于葡萄糖热解炭的有序度比淀粉热解炭更高,这组试样具有更好的循环性能和倍率性能,在2 A/g大电流密度下其比容量高于400 mAh/g。  相似文献   

17.
以5-磺基水杨酸和戊二酸为螯合和氧化试剂,在水热条件下将硫酸钴氧化成纳米级Co3O4。以碳纳米管薄膜为载体将Co3O4颗粒紧密地附着在碳纳米管上使其填充入碳纳米管薄膜的空隙生成Co3O4/碳纳米管复合材料薄膜(Co3O4@CNTs),并研究其储锂性能。电化学测试结果表明,Co3O4@CNTs薄膜具有较高的放电比容量和优异的倍率性能,在0.2C倍率下初始放电比容量高达1712.5 mAh·g-1,100圈循环后放电比容量为1128.9 mAh·g-1的;在1C倍率下100圈循环后放电比容量仍然保持527.8 mAh·g-1。Co3O4@CNTs薄膜优异的性能源于Co3O4与CNTs的协同作用。高分散性的Co3O4增大了活性材料与电解液之间的接触面积,CNTs有助于形成良好的导电网络提高电子电导率,进而提高了Co3O4负极材料的循环性能和倍率性能。  相似文献   

18.
以ZnCl2和FeCl3.6H2O为原料, 通过溶剂热法制备了尖晶石型ZnFe2O4材料, 通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅立叶红外光谱(FT-IR)和恒流充放电测试技术对材料的结构、形貌及电化学性能进行了表征。结果表明, 合成的材料为纳微多孔结构, 其颗粒粒径约为250 nm, 以50 mA/g的电流密度充放电时, 可逆比容量为933.1 mAh/g, 经过100次循环后, 比容量为813.5 mAh/g, 比容量保持率高达87.2%, 表现出优异的循环稳定性能。当电流密度增大到400 mA/g时, 其比容量约为355 mAh/g, 表现出较高的倍率性能。采用该法制备得到的纳米ZnFe2O4具有比容量高、循环稳定好等优点, 是一种具有较强应用前景的锂离子电池负极材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号