共查询到19条相似文献,搜索用时 109 毫秒
1.
密度峰值聚类算法是一种新颖的密度聚类算法,但是原算法仅仅考虑了数据的全局结构,在对分布不均匀的数据集进行聚类时效果不理想,并且原算法仅仅依据决策图上各点的分布情况来选取聚类中心,缺乏可靠的选取标准。针对上述问题,提出了一种基于加权K近邻的改进密度峰值聚类算法,将最近邻算法的思想引入密度峰值聚类算法,重新定义并计算了各数据点的局部密度,并通过权值斜率变化趋势来判别聚类中心临界点。通过在人工数据集上与UCI真实数据集上的实验,将该改进算法与原密度峰值聚类、K-means及DBSCAN算法进行了对比,证明了改进算法能够在密度不均匀数据集上有效完成聚类,能够发现任意形状簇,且在三个聚类性能指标上普遍高于另外三种算法。 相似文献
2.
基于加权K近邻的密度峰值发现算法(FKNN-DPC)是一种简单、高效的聚类算法,能够自动发现簇中心,并采用加权K近邻的思想快速、准确地完成对非簇中心样本的分配,在各种规模、任意维度、任意形状的数据集上都能得到高质量的聚类结果,但其样本分配策略中的权重仅考虑了样本间的欧氏距离。文中提出了一种基于共享近邻的相似度度量方式,并以此相似度改进样本分配策略,使得样本的分配更符合真实的簇归属情况,从而提高聚类质量。在UCI真实数据集上进行实验,并将所提算法与K-means,DBSCAN,AP,DPC,FKNN-DPC等算法进行对比,验证了其有效性。 相似文献
3.
密度峰值聚类算法的局部密度定义未考虑密度分布不均数据类簇间的样本密度差异影响, 易导致误选类簇中心; 其分配策略依据欧氏距离通过密度峰值进行链式分配, 而流形数据通常有较多样本距离其密度峰值较远, 导致大量本应属于同一个类簇的样本被错误分配给其他类簇, 致使聚类精度不高. 鉴于此, 本文提出了一种K近邻和加权相似性的密度峰值聚类算法. 该算法基于样本的K近邻信息重新定义了样本局部密度, 此定义方式可以调节样本局部密度的大小, 能够准确找到密度峰值; 采用样本的共享最近邻及自然最近邻信息定义样本间的相似性, 摒弃了欧氏距离对分配策略的影响, 避免了样本分配策略产生的错误连带效应. 流形及密度分布不均数据集上的对比实验表明, 本文算法能准确找到疏密程度相差较大数据集的密度峰值, 避免了流形数据的分配错误连带效应, 得到了满意的聚类效果; 同时在真实数据集上的聚类效果也十分优秀. 相似文献
4.
针对密度峰值聚类算法(DPC)在处理维数较高、含噪声及结构复杂数据集时聚类性能不佳问题,提出一种结合K近邻的改进密度峰值聚类算法(IDPCA)。该算法首先给出新的局部密度度量方法来描述每个样本在空间中的分布情况,然后引入核心点的概念并结合K近邻思想设计了全局搜索分配策略,通过不断将核心点的未分配K近邻正确归类以加快聚类速度,进而提出一种基于K近邻加权的统计学习分配策略,利用剩余点的K近邻加权信息来确定其被分配到各局部类的概率,有效提高了聚类质量。实验结果表明,IDPCA算法在21个典型的测试数据集上均有良好的适用性,而在与DPC算法及另外3种典型聚类算法的性能指标对比上,其优势更为明显。 相似文献
5.
针对密度分布不均数据,密度峰值聚类算法易忽略类簇间样本的疏密差异,导致误选类簇中心;分配策略易将稀疏区域的样本误分到密集区域,导致聚类效果不佳的问题,本文提出一种面向密度分布不均数据的加权逆近邻密度峰值聚类算法。该算法首先在局部密度公式中引入基于sigmoid函数的权重系数,增加稀疏区域样本的权重,结合逆近邻思想,重新定义了样本的局部密度,有效提升类簇中心的识别率;其次,引入改进的样本相似度策略,利用样本间的逆近邻及共享逆近邻信息,使得同一类簇样本间具有较高的相似度,可有效改善稀疏区域样本分配错误的问题。在密度分布不均、复杂形态和UCI数据集上的对比实验表明,本文算法的聚类效果优于IDPC-FA、FNDPC、FKNN-DPC、DPC和DPCSA算法。 相似文献
6.
《软件》2017,(4):85-90
基于密度的聚类算法(Density Peak Clustering,DPC)广泛使用在处理非球形数据集的聚类问题,算法使用较少的参数就能够实现数据集的处理。但该算法存在这样一些的不足:首先,全局变量的设定没有考虑数据的局部结构,特别是当不同类别的局部密度差别很大的情况下,容易忽略一些密度较小的类别,聚类效果不理想。其次,DPC提出了一种通过决策图来人工选取聚类中心点的方法,这也是DPC算法在人工智能数据分析的一个重大缺陷。为此,本文提出了基于K近邻的模糊密度峰值聚类算法,算法针对这两方面的不足进行了改进。最后本文使用人工数据集和UCI数据集进行了实验,实验结果表明本文所提出的算法,在不通过人工选取聚类中心的情况下,能够正确地找出类别个数,并且保持着较高的聚类精确度,验证了算法的有效性。 相似文献
7.
密度峰值聚类(DPC)是近年来提出的一种新的密度聚类算法,算法的核心是基于局部密度和相对距离,通过画出决策图,人为选定聚类中心,进而完成聚类.DPC算法利用截断距离计算局部密度,本质上只考虑了周围近邻节点的数量,且算法采用单步分配策略,一定程度上限制了算法对任意数据集的计算精度和有效性.针对上述问题,提出基于二阶k近邻... 相似文献
8.
快速搜索与发现密度峰值聚类算法(Fast Search and Discovery Density Peak Clustering Algorithm,CFSFDP)的聚类效果十分依赖截断距离[dc]的主观选取,而最佳[dc]值的确定并不容易,并且当处理分布复杂、密度变化大的数据集时,算法生成的决策图中类簇中心点与非类簇中心点的区分不够明显,使类簇中心的选取变得困难。针对这些问题,对其算法进行了优化,并提出了基于K近邻的比较密度峰值聚类算法(Comparative Density Peak Clustering algorithm Based on K-Nearest Neighbors,CDPC-KNN)。算法结合K近邻概念重新定义了截断距离和局部密度的度量方法,对任意数据集能自适应地生成截断距离,并使局部密度的计算结果更符合数据的真实分布。同时在决策图中引入距离比较量代替原距离参数,使类簇中心在决策图上更加明显。通过实验验证,CDPC-KNN算法的聚类效果整体上优于CFSFDP算法与DBSCAN算法,分离度实验表明新算法使类簇中心与非类簇中心点的区分度得到有效提高。 相似文献
9.
10.
密度峰值聚类(DPC)将数据样本点的局部密度和相对距离进行结合,能对任意形状数据集进行聚类处理,但密度峰值聚类算法存在主观选择截断距离、简单分配策略和较高时间复杂度等问题。为此,提出了一种基于网格近邻优化的密度峰值聚类算法(KG-DPC算法)。首先对数据空间进行网格化,减少了样本数据点之间距离的计算量;在计算局部密度时不仅考虑了网格自身的密度值,而且考虑了周围k个近邻的网格密度值,降低了主观选择截断距离对聚类结果的影响,提高了聚类准确率,设定网格密度阈值,保证了聚类结果的稳定性。通过实验结果表明,KG-DPC算法比DBSCAN、DPC和SDPC算法在聚类准确率上有很大提升,在聚类平均消耗时间上DPC、SNN-DPC和DPC-NN算法分别降低38%、44%和44%。在保证基本聚类准确率的基础上,KG-DPC算法在聚类效率上有特定优势。 相似文献
11.
基于快速搜索和寻找密度峰值聚类算法(DPC)具有无需迭代且需要较少参数的优点,但其仍然存在一些缺点:需要人为选取截断距离参数;在流形数据集上的处理效果不佳。针对这些问题,提出一种密度峰值聚类改进算法。该算法结合了自然和共享最近邻算法,重新定义了截断距离和局部密度的计算方法,并且算法融合了候选聚类中心计算概念,通过算法选出不同的候选聚类中心,然后以这些候选中心为新的数据集,再次开始密度峰值聚类,最后将剩余的点分配到所对应的候选中心点所在类簇中。改进的算法在合成数据集和UCI数据集上进行验证,并与K-means、DBSCAN和DPC算法进行比较。实验结果表明,提出的算法在性能方面有明显提升。 相似文献
12.
针对密度峰值聚类算法(Density Peaks Clustering,DPC)需要人为指定截断距离d c,以及局部密度定义简单和一步分配策略导致算法在复杂数据集上表现不佳的问题,提出了一种基于自然最近邻的密度峰值聚类算法(Density Peaks Clustering based on Natural Nearest Neighbor,NNN-DPC)。该算法无需指定任何参数,是一种非参数的聚类方法。该算法首先根据自然最近邻的定义,给出新的局部密度计算方法来描述数据的分布,揭示内在的联系;然后设计了两步分配策略来进行样本点的划分。最后定义了簇间相似度并提出了新的簇合并规则进行簇的合并,从而得到最终聚类结果。实验结果表明,在无需参数的情况下,NNN-DPC算法在各类数据集上都有优秀的泛化能力,对于流形数据或簇间密度差异大的数据能更加准确地识别聚类数目和分配样本点。与DPC、FKNN-DPC(Fuzzy Weighted K-nearest Density Peak Clustering)以及其他3种经典聚类算法的性能指标相比,NNN-DPC算法更具优势。 相似文献
13.
为了更好地解决密度不均衡问题与刻画高维数据相似性度量问题,提出一种基于共享[k]-近邻与共享逆近邻的密度峰聚类算法。该算法计算两个点的共享[k]-近邻数与共享逆近邻数,并结合欧氏距离来确定这两个点之间的共享相似度;将样本点与其逆近邻点的共享相似度之和定义为该点的共享密度,再通过共享密度选取聚类中心。通过实验证明,该算法在人工数据集和真实数据集上的聚类结果较其他密度聚类算法更加准确,并且能更好地处理密度不均衡问题,同时也提高了高维数据的聚类精度。 相似文献
14.
在谱聚类算法没有先验信息的情况下,对于具有复杂形状和不同密度变化的数据集很难构建合适的相似图,且基于欧氏距离的高斯核函数的相似性度量忽略了全局一致性.针对该问题,提出一种基于共享最近邻的密度自适应邻域谱聚类算法(SC-DANSN).通过一种无参数的密度自适应邻域构建方法构建无向图,将共享最近邻作为衡量样本之间的相似性度... 相似文献
15.
聚类作为一种有效的图像分割方法,被广泛地应用于计算机视觉领域。相较于其他聚类方法,密度峰值聚类(DPC)具有参数少且能有效识别非球形聚类的特点。基于此,引入信息论中的不确定性度量熵,提出一种改进的DPC图像分割算法。将图像像素点的颜色空间CIE Lab值作为特征数据,通过计算信息熵求得自适应截断距离以取代经验取值,建立相应的决策图并确定聚类中心总数,归类非聚类中心点,剔除噪声点从而完成图像分割。在Berkeley数据集上的实验结果表明,该算法能较好地实现彩色图像的分割,其平均分割时间和PRI指标分别为14.658 s和0.721。 相似文献
16.
针对密度峰值算法在选取聚类中心时的时间复杂度过高,需要人工选择截断距离并且处理流形数据时有可能出现多个密度峰值,导致聚类准确率下降等问题,提出一种新的密度峰值聚类算法,从聚类中心选择、离群点筛选、数据点分配三方面进行讨论和分析,并给出相应的聚类算法。在聚类中心的选择上采取KNN的思想计算数据点的密度,离群点的筛选和剪枝以及数据点分配则利用Voronoi图的性质,结合数据点的分布特征进行处理,并在最后应用层次聚类的思想以合并相似类簇,提高聚类准确率。实验结果表明:所提算法与实验对比算法相比较,具有较好的聚类效果和准确性。 相似文献
17.
边界剥离聚类算法(BP)是一种基于密度的聚类算法,它通过逐渐剥离边界点来揭示聚类的潜在核心,已经被证明是一种十分有效的聚类手段.然而, BP算法仍存在一些不足之处:一方面,数据点的局部密度仅考虑了距离特征,使得边界点的确定不够合理;另一方面, BP算法中的关联策略容易误判异常值,并且在分配边界点时容易产生连带错误.为此,本文提出了一种基于共享近邻和优化关联策略的边界剥离聚类算法(SOBP).该算法使用了基于共享近邻的局部密度函数来更好地探索数据点之间的相似性,同时优化了BP算法中的关联策略,使得每次迭代中边界点不再仅与一个非边界点进行关联,并进一步采用了边界点与非边界点、已剥离边界点之间的双重关联准则.在一些数据集上的测试表明,相较于其他6种经典算法,该算法在评估指标上表现更佳. 相似文献
18.
利用客户交易数据聚类分析,可得到更优异的客户细分效果,有助于企业更详实地了解消费者,制定精准的营销策略.PurTreeClust是一种新型的客户交易数据聚类算法,定义了一种新型的度量方式PurTree距离,可以很好地分析处理具有层次树结构的交易数据,但未考虑近邻点的影响,仅将交易树分配到距离最近的聚类中心所属类簇,容易... 相似文献