共查询到17条相似文献,搜索用时 125 毫秒
1.
目标数量多、尺度较小与高度重叠等问题导致目标检测精度低、难度大。为提升目标检测精度,尽可能避免漏检、误检情况,提出一种基于边界极限点特征的改进YOLOv3目标检测算法。首先,引入边界增强算子Border,从边界的极限点中自适应地提取边界特征来增强已有点特征,提高目标定位准确度;然后,增加目标检测尺度,细化特征图,增强特征图深、浅层语义信息的融合,提高目标检测精度;最后,基于目标检测中目标实例特性及改进网络模型,引入完全交并比(CIoU)函数对原YOLOv3损失函数进行改进,提高检测框收敛速度以及检测框召回率。实验结果表明,相较于原YOLOv3目标检测算法,改进后的YOLOv3目标检测算法的平均精度提高了3.9个百分点,且检测速度与原算法相近,能有效提高模型对目标的检测能力。 相似文献
2.
在目标检测中,框回归损失函数的设定直接影响预测框的定位准确性。预测框与目标框的交并比(IOU)被设定为优化预测框的损失函数,但是当两框无重叠面积时无法进行梯度回传。广义的交并比(GIOU)在IOU损失函数的基础上增加非重叠面积部分,将两部分优化项作为损失函数调整预测框位置,解决了无法梯度回传的情况。但当两框是包含关系时,GIOU的第二部分优化项消失,损失函数退化为IOU。为了解决以上问题,提出了一种重新定义的广义交并比损失函数(RGIOU),将非重叠部分面积定义为两框之并减去两框之交,再除以两框形成的最小闭包面积作为第一部分,除以最小闭包面积的平方作为第二部分,利用权重阈值进行加和形成新的损失函数。避免了两框是包含关系时存在的问题,提升了目标检测算法的精度。上述算法在PASCAL VOC 2007以及MS COCO 2014数据集上加以验证。 相似文献
3.
针对目前我国智能驾驶辅助系统识别道路交通标志检测速度慢、识别精度低等问题,提出一种基于YOLOv3的改进的道路交通标志检测算法。首先,将MobileNetv2作为基础特征提取网络引入YOLOv3以形成目标检测网络模块MN-YOLOv3,在MN-YOLOv3主干网络中引入两条Down-up连接进行特征融合,从而减少检测算法的模型参数,提高了检测模块的运行速度,增强了多尺度特征图之间的信息融合;然后,根据交通标志目标形状的特点,使用K-Means++算法产生先验框的初始聚类中心,并在边界框回归中引入距离交并比(DIOU)损失函数来将DIOU与非极大值抑制(NMS)结合;最后,将感兴趣区域(ROI)与上下文信息通过ROI Align统一尺寸后融合,从而增强目标特征表达。实验结果表明,所提算法性能更好,在长沙理工大学中国交通标志检测(CCTSDB)数据集上的平均准确率均值(mAP)可达96.20%。相较于Faster R-CNN、YOLOv3、Cascaded R-CNN检测算法,所提算法拥有具有更好的实时性和更高的检测精度,对各种环境变化具有更好的鲁棒性。 相似文献
4.
5.
为有效解决车辆目标检测算法参数量大、计算成本高等问题,提出一种改进YOLOv3算法。利用深度可分离卷积和注意力机制重新设计主干特征提取网络结构,通过增大神经网络深度、拓宽特征提取层数实现更高层语义信息的提取,可获得更精细特征,减少模型参数量和计算量;引入CIOU回归优化损失函数,量化预测框与真实框中心点距离、重叠面积、尺度以及长宽比等评测指标,解决均方误差(MSE)损失优化方向不一致的问题,使目标框回归更加稳定。实验结果表明,该算法参数量为19.56M,比YOLOv3算法降低了近67%,同时平均精度均值(m AP)提高了3.68%,每秒帧数(FPS)提高了8帧,为车辆目标检测提供了容易部署在移动端的轻量级网络。 相似文献
6.
7.
物体检测是计算机视觉领域的一个关键内容,主要研究如何在静态图像或动态视频流中快速、准确地识别及定位出其中的目标。基于图像的古建筑检测可用于古建筑三维重建、智慧旅游等领域,具有重要的研究意义和实际应用价值。然而,受到古建筑样式、形状、花纹及纹理质地等影响,目前的物体检测器存在检测精度低和定位不准的问题。针对上述问题,基于YOLOv3网络模型,结合密度聚类和距离聚类思想,设计了一种基于RNN-DBSCAN+k-means的古建筑检测方法。该方法首先结合影响空间思想,采用RNN-DBSCAN算法对已标注的古建筑图像聚类,生成聚类结果集;其次从聚类结果集中选取最优的k个结果作为k-means的初始聚类中心;然后将这k个聚类中心作为聚类初始值,结合k-means算法得出聚类结果,并作为YOLOv3网络的先验框;最后以voc数据集(20类)和古建筑数据集为对象,验证了算法的有效性。针对古建筑数据集,算法检出率提高了0.33%;而在voc数据集单类检测中,算法检出率提高了0.04%~0.84%。 相似文献
8.
针对金属表面缺陷检测中目标尺寸小和特征不清晰导致漏检的问题,提出一种改进YOLOv3的金属缺陷检测算法.在YOLOv3网络结构的基础上,将第11层浅层特征与网络深层特征融合,生成一个新的尺度为104×104特征图层,提取更多小缺陷目标特征.加入DIoU边框回归损失,为边界框提供移动方向以及更准确的位置信息,加快模型收敛... 相似文献
9.
针对雾天车辆检测过程中雾气影响严重导致检测精度不高的问题,为提升检测性能,基于暗通道去雾方法和YOLOv3模型提出一种改进的检测算法。首先,通过暗通道算法对图像进行去雾操作,提升图像的清晰度;其次,通过K-means聚类计算适合车辆检测的先验框,提升YOLOv3算法的检测精度;最后,引入注意力机制,对用以检测的特征图作进一步的特征提取,提高了算法对特征信息的挖掘能力。为了测试该算法的检测效果,在雾天车辆数据集上进行实验。实验结果表明,本文算法比YOLOv3算法的平均精度提升了4.1%,达到了97.5%,能够有效地提升雾天车辆检测的性能。 相似文献
10.
针对目前在遥感目标检测领域广泛使用的YOLOv3算法存在对小目标物体的特征表达能力不足,检测效果不好的问题,本文提出一种改进的YOLOv3小目标检测算法.首先,引入全局信息注意力机制并改进特征提取网络和特征金字塔结构,提高模型小目标特征提取能力和检测能力;其次,对数据集进行单尺度Retinex融合特征增强,提高模型对小目标特征的学习效果;最后,使用自适应锚框优化算法对anchors进行优化,提高anchors和目标的匹配程度.选用遥感数据集RSOD进行实验,本文算法的全类平均精度为92.5%,相比经典YOLOv3算法,提高10.1%,对遥感小目标的检测效果得到明显提升. 相似文献
11.
云是一种常见的天气现象,云状是天气预测的关键特征.目前,地基云图像中的云状观测主要依赖于气象观测员的目视观测,十分依赖观测员的经验,实时性和效率较低.针对这一问题,提出使用深度学习的方法进行地基云状检测识别.设计了一种新的目标检测边界框损失函数UIoU,将其应用于YOLOv3算法上.并且使用了K-means聚类算法重新... 相似文献
12.
基于包围盒的碰撞检测算法研究 总被引:21,自引:4,他引:21
基于包围盒的碰撞检测算法是一类重要的碰撞检测算法。文章比较了几种常用的包围盒碰撞检测算法;给出了OBB包围盒的计算算法及其改进和修正算法;包围盒树的建立算法;包围盒的重叠测试和基于包围盒的碰撞检测算法;最后以OBB验证了该类算法的有效性,正确性和鲁棒性。 相似文献
13.
边界框回归分支是深度目标跟踪器的关键模块, 其性能直接影响跟踪器的精度. 评价精度的指标之一是交并比(Intersection over union, IoU). 基于IoU的损失函数取代了$ \ell_n $-norm损失成为目前主流的边界框回归损失函数, 然而IoU损失函数存在2个固有缺陷: 1)当预测框与真值框不相交时IoU为常量 0, 无法梯度下降更新边界框的参数; 2)在IoU取得最优值时其梯度不存在, 边界框很难收敛到 IoU 最优处. 揭示了在回归过程中IoU最优的边界框各参数之间蕴含的定量关系, 指出在边界框中心处于特定位置时存在多种尺寸不同的边界框使IoU损失最优的情况, 这增加了边界框尺寸回归的不确定性. 从优化两个统计分布之间散度的视角看待边界框回归问题, 提出了光滑IoU (Smooth-IoU, SIoU)损失, 即构造了在全局上光滑(即连续可微)且极值唯一的损失函数, 该损失函数自然蕴含边界框各参数之间特定的最优关系, 其唯一取极值的边界框可使IoU达到最优. 光滑性确保了在全局上梯度存在使得边界框更容易回归到极值处, 而极值唯一确保了在全局上可梯度下降更新参数, 从而避开了IoU损失的固有缺陷. 提出的光滑损失可以很容易取代IoU损失集成到现有的深度目标跟踪器上训练边界框回归, 在 LaSOT、GOT-10k、TrackingNet、OTB2015和VOT2018测试基准上所取得的结果, 验证了光滑IoU损失的易用性和有效性. 相似文献
14.
15.
16.
17.
随着ETC通道车辆违规行为的不断增加,针对该场景下不同尺度和类型的车辆检测已经成为城市交通管理的一项重要工作.论文基于高速公路ETC场景下的真实数据集,提出了一种车辆检测的优化方法.为提高算法在车辆检测方面的适用性和准确性,论文在YOLOv3算法的基础上采用GIOU作为YOLOv3的边界框回归损失函数,同时用调整过的锚... 相似文献