共查询到18条相似文献,搜索用时 125 毫秒
1.
氢由于具有高效率和高功率密度而被认为是一种出色的清洁能源。化学储氢材料要求具有高的氢储存量。氨硼烷具有高氢含量(19.6%),且在普通贮存条件下稳定,被认为是有吸引力的储氢材料之一。由于氨硼烷在常温下不易放氢,故放氢催化剂成为氨硼烷放氢研究的核心技术和主要方向。金属催化剂可以显著提高水解放氢速度,是影响氨硼烷水解放氢的关键因素,但是金属颗粒催化剂一般都存在颗粒粒径生长过快、易团聚等缺点。为了解决这一问题,研究者选择不同的载体来分散催化剂,使催化剂金属分散在载体表面,防止团聚和过快增长,从而暴露更多活性位点,使催化氨硼烷放氢速率更快。文章将针对不同催化剂载体对氨硼烷水解的催化效果进行阐述。 相似文献
2.
3.
化石能源的广泛使用使得地球上出现了严重的温室效应和空气污染,且化石能源的储量也逐步下降,造成的能源危机日益严重。为了应对这些挑战,人们开始着力寻找清洁无污染的高效可再生能源。氢能因具有超高的燃烧热及零排放的特点而被认为是最理想的清洁能源。镁基储氢材料因具有高的质量储氢密度,且因镁的地壳含量高、成本低等优点而备受关注。镁基储氢材料水解可以产生高纯度的氢,而且副产物对环境无污染,因此被认为是最有应用前景的制氢方式之一。纯Mg和MgH2水解可以分别产生6.4%和3.4%(质量分数)的H2,但镁基储氢材料水解反应产生难溶于水的Mg(OH)2,导致其反应动力学缓慢。近年来,通过将金属、金属氢化物与镁基储氢材料进行复合或者在水解反应时添加酸和无机盐等手段有效提高了氢产率和反应动力学性能。综述了镁基储氢材料水解制氢的最新研究进展,并对其未来的发展提出了展望。 相似文献
4.
硼氢化钠水解制氢具有安全方便、放氢温度适中、反应易于控制和制氢纯度高等优点,现已成为制氢技术中的研究热点.但纯硼氢化钠水解放氢速率缓慢、产氢率低,常需添加合适的催化剂以改善硼氢化钠水解的放氢速率.金属催化剂因其具有高的催化活性已被广泛研究.其中,贵金属由于价格昂贵限制了它们的使用,而非贵金属价格低且储量高.并且,近年来有研究发现某些非贵金属催化剂的催化活性有了显著提高.因此,从经济角度出发考虑,将非贵金属用于催化硼氢化钠水解制氢是非常可取的.本文结合近几年国内外非贵金属催化剂催化硼氢化钠水解的发展现状,介绍了非负载型催化剂和负载型催化剂的研究进展,并对其未来的发展趋势进行了展望. 相似文献
5.
利用化学浸渍-还原法制备出了Ru-B催化剂,考察了催化剂的制备条件和反应条件对Ru-B催化剂催化NaBH4水解制氢性能的影响。结果表明:当活性组分前体RuCl3·6H2O和还原剂NaBH4的物质的量比为1∶7,还原温度为303K时,制得的Ru-B催化剂催化NaBH4水解制氢性能最佳。当催化剂浓度为0.17g/L,反应温度为303K,NaBH4浓度为0.22mol/L,NaOH浓度为0.01mol/L,转速为540r/min时,Ru-B催化剂催化NaBH4水解产氢的速率可达1740mL H2/(min·g)。还发现Ru-B催化剂催化NaBH4水解产氢的速率与催化剂用量呈线性关系,计算得到Ru-B催化剂催化NaBH4水解产氢反应的活化能为23.58kJ/mol。 相似文献
6.
据媒体报导,普渡大学的科学家们在氢制备工艺上日前有了重要突破。采用他们的方法可大量制备氢气,且成本低廉。传统的氢制备工艺有二:一是用钠硼氢化物在催化剂的作用下与水发生反应;二是采用在铝燃烧的同时与水反应生成氢气。这两种方法均有弊病:前者需使用价格昂贵的钉作催化剂:后者氢产量很小。普渡大学的科学家将上述2种方法结合起来。他们发明了一种被称为三重硼氢金属水混合物的物质。 相似文献
7.
太阳能光催化分解水是实现绿色、高效生产可持续能源氢气的重要途径之一,而光催化剂的设计和开发在这一过程中起着关键作用。常用的传统半导体光催化剂目前面临的主要挑战包括阳光利用率不足、载流子易复合、活性位点暴露不足等问题,因此,开发新型、高效光催化剂的研究显得尤为重要。具有类半导体行为的金属有机框架(metal-organic frameworks, MOFs)材料,由于其超高的比表面积、孔隙率及高规整度,近年来在光催化产氢领域受到越来越广泛的关注。介绍了MOFs材料的结构特点及在光催化制氢领域中应用的独特优势,基于光催化机理从改善光吸收、促进电荷分离和加速表面反应几个方面,总结了提高MOF基光催化剂活性的策略,并对其应用前景进行了展望。 相似文献
8.
随着能源枯竭和环境污染问题日益严重,人们不得不将目光转向更加清洁环保的氢能源。光解水制氢技术是一种获取氢能源经济且清洁的理想方式,通过光催化手段将太阳能转化为化学能也是一种很有前景的技术手段。然而如何选取高效、经济的光催化剂是制氢最关键的环节。金属-有机框架(Metal-organic frameworks, MOFs)由于比表面积大、孔尺寸可调节、结构易于修饰及活性位点丰富等特点,使其成为光解水制氢理想的光催化剂候选材料。国内外学者就MOFs光解水制氢开展了大量的研究,并且取得了丰硕的成果。本论文综述了MOF基材料作为催化剂在光解水制氢领域的研究进展,总结了MOFs作为催化剂的优点和局限性,并对MOFs及其相关材料在光催化水解制氢领域的发展前景提出展望,以期对未来研究提供参考。 相似文献
9.
作为低成本高容量水解制氢材料,Si材料受到广泛关注,但由于产氢量少和速度慢,使其应用受限。为改进Si的产氢性能,采用球磨方法制备了Si-LiH(LiBH_4)复合物,并在此基础上添加NiCl_2制备了三元复合物,研究了复合物的水解制氢特性。实验结果表明,在硅中添加LiH或LiBH_4可以提高复合物水解制氢的产量和初始放氢速率。在室温下水解1h,二元Si-10%molLiH复合物产氢量约为37mL/g,Si-10%molLiBH_4水解产氢容量为126mL/g,三元的Si-10%molLiH-3%mol NiCl_2复合物水解产氢容量为119mL/g,是硅单独水解产氢量的12倍。 相似文献
10.
氨硼烷具有高储氢含量(19.6%,质量分数),在普通贮存条件下稳定,被认为是最具有潜力的储氢材料之一。氨硼烷在常温下不易放氢,金属催化剂可显著提高水解放氢速度,是影响氨硼烷水解放氢的关键因素,然而金属催化剂纳米颗粒易氧化、易团聚,使用载体可使催化剂金属纳米颗粒分散于载体表面或孔道内部,防止氧化和团聚。催化剂及其载体的整体形貌很大程度决定了催化剂的比表面积、催化剂活性颗粒分布状态,从而影响了反应活性位点的数量及分布状态,对氨硼烷水解催化活性和催化剂的使用寿命具有重要影响,因此本文对氨硼烷水解催化剂及其限域载体的整体形貌按空间维度进行分类归纳,并对其可控合成方法和其对氨硼烷水解催化效果进行综述。 相似文献
11.
12.
13.
预先在酵母菌模板表面沉积Co(OH)3, 经高温煅烧后成功制得Co3O4空心微球, 并作为前驱体催化NaBH4水解制氢。通过场发射扫描电镜(FE-SEM)和X射线衍射(XRD)进行样品的微观形貌和物相分析。研究结果表明, 当反应液中NaBH4含量为10wt%时, 模板法制备的Co3O4空心微球催化产氢速率高达2140 mL/(min•g) (25℃), 约是同等条件下无模板制备Co3O4活性的9倍, 且所制备的Co3O4空心微球长期储存性能良好。 相似文献
14.
15.
Qiming Sun Ning Wang Qiang Xu Jihong Yu 《Advanced materials (Deerfield Beach, Fla.)》2020,32(44):2001818
Hydrogen has emerged as an environmentally attractive fuel and a promising energy carrier for future applications to meet the ever-increasing energy challenges. The safe and efficient storage and release of hydrogen remain a bottleneck for realizing the upcoming hydrogen economy. Hydrogen storage based on liquid-phase chemical hydrogen storage materials is one of the most promising hydrogen storage techniques, which offers considerable potential for large-scale practical applications for its excellent safety, great convenience, and high efficiency. Recently, nanopore-supported metal nanocatalysts have stood out remarkably in boosting the field of liquid-phase chemical hydrogen storage. Herein, the latest research progress in catalytic hydrogen production is summarized, from liquid-phase chemical hydrogen storage materials, such as formic acid, ammonia borane, hydrous hydrazine, and sodium borohydride, by using metal nanocatalysts confined within diverse nanoporous materials, such as metal–organic frameworks, porous carbons, zeolites, mesoporous silica, and porous organic polymers. The state-of-the-art synthetic strategies and advanced characterizations for these nanocatalysts, as well as their catalytic performances in hydrogen generation, are presented. The limitation of each hydrogen storage system and future challenges and opportunities on this subject are also discussed. References in related fields are provided, and more developments and applications to achieve hydrogen energy will be inspired. 相似文献
16.
17.
高容量储氢材料的研究进展 总被引:6,自引:0,他引:6
氢能是一种理想的二次能源.氢能开发和利用需要解决氢的制取、储存和利用3个问题,而氢的规模储运是现阶段氢能应用的瓶颈.氢的储存方法有高压气态储存、低温液态储存和固态储存等3种.固态储氢材料储氢是通过化学反应或物理吸附将氢气储存于固态材料中,其能量密度高且安全性好,被认为是最有发展前景的一种氖气储存方式.由轻元素构成的轻质高容量储氢材料,如硼氢化物、铝氢化物、氨摹氢化物等,理论储氢容量均达到5%(质量分数)以上,这为固态储氢材料与技术的突破带来了希望.新型储氢材料未来研究的重点将集中于高储氢容量、近室温操作、可控吸/放氢、长寿命的轻金属基氢化物材料与体系. 相似文献