首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
随着深度卷积神经网络优异的特征提取能力被发掘, 目标检测的进程开始以一种势不可挡的姿态向前推进, 同时, 和深度学习结合的目标检测技术取得了显著的成果, 在自动驾驶、智能化交通系统、无人机场景、军事目标检测和医学导航等现实场景中得到了广泛的应用. 本文回顾了传统目标检测算法的缺点, 介绍了常用的检测数据集以及性能评估指标, 综述了基于深度学习的目标检测经典算法, 阐述了当前目标检测的以及存在的困难与挑战, 对目标检测的未来可行的研究方向进行了展望.  相似文献   

2.
深度学习目前已广泛应用到各个领域,目标检测是计算机视觉领域中的基础问题。针对传统目标检测算法存在的效率低、鲁棒性差等问题,基于深度学习的目标检测算法很好地提高了目标检测效率,成为主流趋势。论文对一些典型的基于深度学习的目标检测算法进行了综述,主要分为基于区域思想和基于回归思想两方面,对算法结构进行了分析和对比,最后对基于深度学习的目标检测算法的发展进行了展望。  相似文献   

3.
深度卷积神经网络的目标检测算法综述   总被引:1,自引:0,他引:1       下载免费PDF全文
目标检测是计算机视觉中的核心任务之一,在智能视频监控、自动化监测、工业检测等领域应用广泛。近些年来,随着深度学习的快速发展,基于深度卷积神经网络的目标检测算法逐渐替代了传统的目标检测算法,成为了该领域的主流算法。介绍了目标检测算法的常用数据集和性能评价指标,介绍了卷积神经网络的发展,重点分析比较了两阶段目标检测算法和单阶段目标检测算法,展望了基于深度卷积神经网络的目标检测算法未来的发展。  相似文献   

4.
基于深度学习的目标检测算法研究综述   总被引:1,自引:0,他引:1  
传统的目标检测算法主要依赖于人工选取的特征来对物体进行检测.人工提取的特征对主要针对某些特定对象,比如有的特征适合做边缘检测,有的适合做纹理检测,不具有普遍性.近年来,深度学习蓬勃发展,在计算机视觉领域比如图像分类、目标检测、图像语义分割等方面取得了重大的进展.深度学习作为一种特征学习方法能够自动学习到目标的有用特征,...  相似文献   

5.
深度学习的典型目标检测算法研究综述   总被引:1,自引:0,他引:1       下载免费PDF全文
目标检测是计算机视觉的一个重要研究方向,其目的是精确识别给定图像中特定目标物体的类别和位置.近年来,深度卷积神经网络(Deep Convolutional Neural Networks,DCNN)所具有的特征学习和迁移学习能力,在目标检测算法特征提取、图像表达、分类与识别等方面取得了显著进展.介绍了基于深度学习目标检...  相似文献   

6.
在R-CNN框架提出后,基于深度学习的目标检测框架逐渐成为主流,可分为基于候选窗口和基于回归两类。近两年来,在Faster R-CNN、YOLO、SSD等经典的基于深度学习目标检测框架的基础上,出现了大量的优秀框架。根据优化方法对近几年提出的框架进行了梳理和总结。在PASCAL_VOC和MS COCO等主流测试集上对目标检测方法的性能及优缺点进行了对比分析。讨论了目标检测领域当前面临的困难与挑战,对可能的发展方向进行了展望。  相似文献   

7.
基于深度学习的小目标检测算法综述   总被引:1,自引:0,他引:1       下载免费PDF全文
随着人工智能技术的发展,深度学习技术在人脸识别、行人检测、无人驾驶等领域得到了广泛的应用.而目标检测作为机器视觉中最基本、最具有挑战性的问题之一,近年来受到了广泛的关注.针对目标检测特别是小目标检测问题,归纳了常用的数据集和性能评价指标,并对各类常见数据集的特点、优势及检测难度进行对比,系统性地总结了常用的目标检测方法...  相似文献   

8.
现有的目标检测算法,对大目标以及中目标的检测已具有较高的准确率,然而由于小目标在图像中的像素以及可利用的特征较少等原因,导致小目标的检测精度相较于大目标而言过低。通过融合特征层,小目标的检测已取得了不错的效果,但仍存在对于微小目标的定位等问题。基于此,解释了小目标的定义,指出了导致小目标检测精度低的五点原因。将近几年最新进展以及过往经典的小目标检测优化方法按照大致原理从多尺度特征、评估指标、超分辨率等方面进行叙述。归纳了针对特定场景下的小目标检测:航空遥感图像以及人脸行人的检测方法。总结并提出了未来小目标检测可能的研究方向。  相似文献   

9.
目标检测算法研究综述   总被引:1,自引:0,他引:1       下载免费PDF全文
目标检测是计算机视觉中一个重要问题,在行人跟踪、车牌识别、无人驾驶等领域都具有重要的研究价值。近年来,随着深度学习对图像分类准确度的大幅度提高,基于深度学习的目标检测算法逐渐成为主流。梳理了目标检测算法的发展与现状,并作出展望:总结了传统算法与引入深度学习的目标检测算法的发展、改进与不足,并就此做出对比;最后讨论了基于深度学习的目标检测算法所存在的困难与挑战,并就可能的发展方向进行了展望。  相似文献   

10.
目标检测技术是计算机视觉技术的一个热点研究方向,该技术广泛应用于车辆导航、航空及其他重要领域,发展前景广阔。将深度学习应用到图像目标检测中能够学习到图像的高级特征,弥补传统算法的不足。首先,重点介绍了基于深度学习的单阶段目标检测算法;分析了多种算法的结构和优缺点,然后对各算法做了归纳总结;最后,结合目标检测算法提出未来发展的方向与趋势。  相似文献   

11.
目标检测是计算机视觉的核心,在图像识别、行人检测、大规模场景识别等方面具有广泛应用,提升目标检测的速度与精度可以拓展计算机视觉的应用范围。大数据的出现以及深度学习的发展为目标检测研究注入了新的动力。传统的目标检测主要使用基于手工特征配合机器学习的方法,即Feature-Based方法。目前的检测算法主要以卷积神经网络(CNN)为核心。分析了Feature-Based方法检测效果差的原因并提出改进方法,详细讨论了CNN网络衍生出的TWO-STATE方法和ONE-STATE方法,介绍了每种方法的联系以及相比之前方法的改进,详细描述了其网络的机理与检测过程,指出了每种方法的检测效果与不足。总结了目标检测方法在一些数据集上的检测效果与仍然存在的问题。  相似文献   

12.
Object detection is one of the most important and challenging branches of computer vision, which has been widely applied in people s life, such as monitoring security, autonomous driving and so on, with the purpose of locating instances of semantic objects of a certain class. With the rapid development of deep learning algorithms for detection tasks, the performance of object detectors has been greatly improved. In order to understand the main development status of target detection, a comprehensive literature review of target detection and an overall discussion of the works closely related to it are presented in this paper. This paper various object detection methods, including one-stage and two-stage detectors, are systematically summarized, and the datasets and evaluation criteria used in object detection are introduced. In addition, the development of object detection technology is reviewed. Finally, based on the understanding of the current development of target detection, we discuss the main research directions in the future.  相似文献   

13.
基于计算机视觉的果实目标检测识别是目标检测、计算机视觉、农业机器人等多学科的重要交叉研究课题,在智慧农业、农业现代化、自动采摘机器人等领域,具有重要的理论研究意义和实际应用价值。随着深度学习在图像处理领域中广泛应用并取得良好效果,计算机视觉技术结合深度学习方法的果实目标检测识别算法逐渐成为主流。本文介绍基于计算机视觉的果实目标检测识别的任务、难点和发展现状,以及2类基于深度学习方法的果实目标检测识别算法,最后介绍用于算法模型训练学习的公开数据集与评价模型性能的评价指标,且对当前果实目标检测识别存在的问题和未来可能的发展方向进行讨论。  相似文献   

14.
小目标检测是针对图像中像素占比少的目标,借助计算机视觉在图像中找到并判断该目标所属类别的目标检测技术。与目前应用较为成熟的大尺度、中尺度目标检测不同,小目标自身存在着语义信息少、覆盖面积小等先天不足,导致小目标的检测效果并不理想,因此如何提高小目标的检测效果依然是计算机视觉领域的一大难题。对近年来国内外小目标检测领域研究成果进行了梳理,以小目标检测技术为核心,对关于小目标的定义、检测难点进行分析;将能有效提高小目标检测精度的方法进行分类汇总,并介绍了各种方法的应用与优缺点;最后对未来小目标检测领域发展趋势进行了预测与展望。  相似文献   

15.
深度学习在目标视觉检测中的应用进展与展望   总被引:2,自引:0,他引:2  
张慧  王坤峰  王飞跃 《自动化学报》2017,43(8):1289-1305
目标视觉检测是计算机视觉领域的一个重要问题,在视频监控、自主驾驶、人机交互等方面具有重要的研究意义和应用价值.近年来,深度学习在图像分类研究中取得了突破性进展,也带动着目标视觉检测取得突飞猛进的发展.本文综述了深度学习在目标视觉检测中的应用进展与展望.首先对目标视觉检测的基本流程进行总结,并介绍了目标视觉检测研究常用的公共数据集;然后重点介绍了目前发展迅猛的深度学习方法在目标视觉检测中的最新应用进展;最后讨论了深度学习方法应用于目标视觉检测时存在的困难和挑战,并对今后的发展趋势进行展望.  相似文献   

16.
车辆目标检测是基于计算机视觉的目标检测领域的一个重要应用领域,近年来随着深度学习在图像分类方面取得的巨大进展,机器视觉技术结合深度学习方法的车辆目标检测算法逐渐成为该领域的研究重点和热点。介绍了基于机器视觉的车辆目标检测的任务、难点与发展现状,以及深度学习方法中几种具有代表性的卷积神经网络模型,通过这些网络模型衍生出的two stage、one stage车辆目标检测算法和用于模型训练的相关数据集与检测效果评价标准,对其存在的问题及未来可能的发展方向进行了讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号