共查询到20条相似文献,搜索用时 62 毫秒
1.
在非侵入式负荷识别中基于原始电压-电流(V-I)轨迹特征的识别方法,难以对相似轨迹特征的负荷做出有效辨识。因此,提出了一种基于V-I轨迹特征的颜色编码方法,并利用K-means聚类算法和AlexNet神经网络进行负荷特征的辨识。首先,运用K-means聚类算法对负荷的有功和无功功率特征进行初步分类。然后,对未分类成功的负荷进行V-I轨迹构建和颜色编码处理,生成带有颜色特征的V-I轨迹。最后,运用AlexNet神经网络对负荷进行训练和分类,达到快速精细化的分类效果。针对公共数据集PLAID和WHITED,运用原始V-I轨迹特征和进行颜色编码后V-I轨迹的识别效果做对比分析,可知所提方法在节省计算时间的同时也提高了识别的准确度,提升效果明显。 相似文献
2.
针对传统方法无法准确识别含高次谐波家用负荷的问题,文中提出了基于V-I轨迹矩阵、功率及高次谐波多特征融合的负荷辨识方法.首先,分析了11种典型家用负荷的V-I轨迹、功率特征以及谐波特征,提出了基于像素图像转换的混合特征矩阵构建方法,将负荷的功率、高次谐波特征通过二进制编码转换与基本V-I像素轨迹相融合,丰富了样本的特征信息;然后以混合特征矩阵作为卷积神经网络的输入,实现了对家用负荷类型的准确识别.算例中,文中所提算法可准确区分功率特征相似但高次谐波含量不同的加热器与吹风机2种负荷,且其对全类型家用负荷的准确辨识率超过93%.该算法的应用可为实际中准确排查含高次谐波家用负荷的用电安全隐患提供有力的技术支撑. 相似文献
3.
非侵入式负荷识别是非侵入式负荷监测的一个重要任务.考虑到实际部署的成本问题,负荷识别的算法常常需要在计算能力与内存受限的设备上运行,因此本文提出了一种基于事件检测和卷积神经网络模型的负荷识别方法并在基于STM32微处理器的嵌入式系统上实现.首先引入带边距的滑动窗口,选取合适的特征值使用霍特林T2检验进行事件检测,对检测... 相似文献
4.
为减少居民生活用电浪费现象,非侵入式负荷监测技术显示出其重要性。基于事件检测的情况下,该文提出一种基于卷积神经网络耦合双向长短时记忆神经网络(convolutionalneuralnetworksandBi-directionallong short-term memory,CNN-BiLSTM)与动态时间规划(dynamic time warping,DTW)的非侵入式住宅负荷监测方法。首先通过概率质量函数计量负荷的运行状态信息,提取出稳态运行时的U-I特性曲线图;然后将图片归一化为统一格式的灰度图,利用卷积神经网络提取出特征向量作为负荷印记;将其输入至双向长短时记忆神经网络中进行辨识,并利用动态时间规划算法优化辨识结果,实现高精度的负荷辨识。最后,利用PLAID公开数据集对于所提算法进行仿真验证,实验证明所选负荷印记具有良好的辨识性能,辨识算法相比对比算法具有更高的信度与准确率。 相似文献
5.
非侵入式负荷识别可以实现电网和用户的灵活双向互动,对智能电网的发展具有重大意义,而神经网络因其自学习能力及计算复杂度低等优点越来越多地应用在非侵入式负荷识别中。针对现有BP神经网络方法容易陷入局部最优、收敛速度慢的问题,文章提出了一种基于广义回归神经网络(GRNN)的非侵入式负荷识别方法。该方法使用负荷投切过程的功率、谐波、投切时间等暂态特征作为输入,应用Parzen非参数估计方法搭建网络结构,利用模拟退火算法的全局搜索能力对光滑因子进行寻优,从而建立GRNN网络模型进行负荷识别。实验结果表明,相对于BP神经网络,文中方法具有更好的识别精度和训练速度。 相似文献
6.
随着智能电网的迅速发展,为了有效提高电能的使用率,合理规划电能资源,建立全国范围内的智能用电和负荷监测系统,非侵入式负荷监测(NILM)和分解问题一直受到广泛关注。为提高非侵入性负载分解性能,提出一种基于耦合神经网络的非侵入式负荷分解方法。首先,对数据集进行归一化和预处理。其次,构建一种将卷积神经网络(CNN)与双向门控循环单元(BiGRU)相结合的混合深度学习模型,对数据的空间特性和时序特性进行充分挖掘,并加入注意力机制,关注重要信息,剔除冗余特征。最后,采用国内自测数据集进行试验,使用不同的评价指标对该耦合神经网络进行评估,并与其他的常用分解模型进行对比。试验结果表明,所提方法的均值绝对误差与绝对误差和相较于其他分解方法都有所降低,均值绝对误差平均下降了35.9%,绝对误差和平均下降了39.9%。 相似文献
7.
张玉天邓春宇刘沅昆陈盛史梦洁 《电网技术》2020,(6):2038-2044
非侵入式负荷监测因其实施成本低且对用户干扰小,具有广泛的应用前景。负荷辨识方法是非侵入式复合监测的主要技术难点之一。研究了非侵入式负荷监测模式下基于卷积神经网络的非侵入负荷辨识算法。首先利用局部平均分解算法对采集到的混合信号进行负荷分离,并通过智能学习的方法提取独立负荷特征,建立了能够处理二维图像数据的卷积神经网络模型,将大量典型家电的运行电流数据转换成图片的形式,对卷积神经网络模型进行训练,并基于该模型进行负荷特征提取,从而达到辨识的目的。经过实际采集的用电数据进行仿真实验,结果表明,基于卷积神经网络的负荷辨识准确率高、识别速度快,模型具有良好的泛化能力,能够有效的实现负荷辨识。 相似文献
8.
针对传统方法无法准确识别含高次谐波家用负荷的问题,文中提出了基于V-I轨迹矩阵、功率及高次谐波多特征融合的负荷辨识方法。首先,分析了11种典型家用负荷的V-I轨迹、功率特征以及谐波特征,提出了基于像素图像转换的混合特征矩阵构建方法,将负荷的功率、高次谐波特征通过二进制编码转换与基本V-I像素轨迹相融合,丰富了样本的特征信息;然后以混合特征矩阵作为卷积神经网络的输入,实现了对家用负荷类型的准确识别。算例中,文中所提算法可准确区分功率特征相似但高次谐波含量不同的加热器与吹风机2种负荷,且其对全类型家用负荷的准确辨识率超过93%。该算法的应用可为实际中准确排查含高次谐波家用负荷的用电安全隐患提供有力的技术支撑。 相似文献
9.
从深度学习与边缘计算的角度,对适用于电力物联网的非侵入式负荷监测方法展开了研究.针对NILM系统在物联网场景下的部署问题,提出了一种新的边缘计算架构,并讨论了各组成部分的任务分配.针对负荷激活在线提取问题,提出了基于离散度和用电行为规律分析的激活判断策略;针对低频采样下的负荷特征问题,提出了一种可自动提取激活特征并识别... 相似文献
10.
强监督识别算法需要大量的人工标注信息,消耗较多的人力物力资源。为了解决上述问题,满足实际需求,提出了两种基于弱监督信息图像识别方法用于细粒度图像分类(FGVC)。一种是联合残差网络和Inception网络,通过优化卷积神经网络的网络结构提高捕捉细粒度特征的能力。另一种是对双线性CNN模型进行改进,特征提取器选取Google提出的Inception-v3模组和Inception-v4模组,最后把不同的局部特征汇集起来进行分类。通过在CUB200-2011鸟类公开数据集和Stanford Cars汽车类型数据集上进行测试,实验结果表明,提出的方法在两种数据集上的分类精度分别到达了88.3%和94.2%的分类精度,实现了较好的分类性能。 相似文献
11.
非侵入式负荷识别可以提供用电信息,帮助用户改善用电习惯,是智能用电的关键技术。现有非侵入式负荷识别方法主要基于负荷的稳态特征进行识别,对稳态特征近似的负荷识别率不高。针对此问题,该文结合各类家用负荷在投切过程中的不同特点,提出了一种基于选择性贝叶斯分类的识别方法。首先,利用模拟退火算法从特征库中依据负荷特点选择出对于各类负荷最具辨识度的特征;然后,根据选择的特征和高斯核密度估计方法建立灵活贝叶斯分类器;最后,通过计算各负荷的后验概率对负荷进行识别。经实测数据检验,该方法具有良好的识别精度和计算速度。 相似文献
12.
基于模板滤波的居民负荷非侵入式快速辨识算法 总被引:1,自引:0,他引:1
以电流信号的频域分析为基础,结合非侵入监测负荷运行的电流模型,利用单独作用时电流信号的频谱分量会完整包含于混合电流频谱中,提出一种基于模板滤波的居民负荷非侵入式快速辨识算法。通过先验方式获取用电网络各负荷的特征电流形成特征滤波器,对其频谱分量进行0-1赋值得到对应的模板滤波器。利用模板滤波器对非侵入采集模式下的混合电流信号滤波,通过对滤波后频率分量的量化判决确定负荷的运行状态。利用实际采集的用电数据验证了该算法的有效性,能够准确判断负荷运行状态。此外,算法利用快速傅里叶变换(FFT)即可实现,便于实际中硬件封装。 相似文献
13.
针对非侵入式负荷辨识中硬性聚类方法易受到电压、电流等干扰因素的影响,本文提出了一种基于离散模糊数的负荷辨识方法。本方法以有功P和无功Q这两种典型的负荷标签特征为出发点,以离散模糊数中有限链路为评价等级基础,构建了基于概率统计的评价方法,将相似特征的用电设备通过转换为离散模糊数矩阵,并结合矩阵质心和评判标准的比例形成最终评价值,进而实现负荷的辨识。相比于硬性聚类方法,本方法具有不单独依赖于P-Q维负荷特征,而是通过负荷对象的评价值方法得出辨识结果,最后通过真实实验验证,证明了本文方法得到的结果与实际的负荷投切结果一致,具有一定的抗干扰能力。 相似文献
14.
15.
负荷在线监测能够为电网及用户提供即时的用电信息,是支撑能效管理和负荷预测工作的有效手段。传统监测方法采用侵入式设计,难以大范围推广应用,因此非侵入式负荷监测方法(NILM)具有重要研究意义。负荷辨识是非侵入式负荷监测的关键,以典型居民负荷的特性分析为基础,提出了一种基于遗传优化的非侵入式居民负荷辨识算法。该算法基于负荷设备的负荷特性,包括有功功率和电流有效值,利用三种不同的编码方法构造判断负荷运行状态的适应度函数,通过遗传算法寻优,最终确定居民负荷的工作状态,并通过实测数据进行验证。实验结果表明,该算法能够实现居民用户负荷状态的有效辨识,且算法收敛速度较快,准确度高。 相似文献
16.
基于特征融合与深度学习的非侵入式负荷辨识算法 总被引:1,自引:0,他引:1
针对使用单一设备特征进行负荷辨识存在的局限性,提出了一种基于特征融合与深度学习的非侵入式负荷辨识算法。通过分析设备的高频采样数据提取了V-I轨迹图像特征与功率数值特征。利用人工神经网络的高级特征提取能力,实现了V-I轨迹图像特征与功率数值特征的融合。最后以复合特征作为设备新的特征训练反向传播(BP)神经网络进行非侵入式负荷辨识。使用PLAID数据集对算法辨识效果进行了验证,并对比了不同分类算法对特征融合的有效性与负荷辨识能力。结果表明,该算法利用不同特征之间的互补性,克服了使用V-I轨迹特征无法反映设备功率大小的缺点,从而提高了V-I轨迹特征的负荷辨识能力,并且在嵌入式设备中的运算速度为毫秒级。 相似文献
17.
非侵入家用负荷识别技术可以指导家庭用户合理安排用电,提高用能效率,同时也为电力部门提供家庭用电的数据支持,有利于了解负荷用电规律及趋势,完善电力规划。由于家庭用户用电负荷的稳态特征值存在相似和无规律的问题,现有的方法多采用高级算法对所有的用电负荷组合进行训练。针对现有采用负荷稳态特征值方法进行识别所存在的不足,考虑到家用负荷稳态波形具有独特性和叠加性,提出了一种利用动态时间弯曲(DTW)算法计算与模版库波形的距离来识别家用负荷的辨识方法。首先,建立负荷稳态波形模版库;然后,在电压满足一定条件的情况下,测量家庭用户电流的稳态波形;最后,利用DTW算法计算出最小距离进行识别。 相似文献
18.
为降低电力负荷数据样本类别不平衡、提高负荷辨识精度,提出一种基于分治策略的二分类多层长短时记忆网络模型非侵入式负荷辨识方法.首先,对负荷样本进行平衡化处理,降低样本间的不平衡度;然后,选择合适的特征变量,并进行特征变量与样本标签的相关性分析;接着,利用分治策略的思想将多分类问题转化为多层择优二分类问题,构建基于分治策略的NP-MLSTM非侵入式负荷辨识模型;最后,选用公开数据集对55户家庭中的11种不同类别的电器进行负荷辨识测试,并与其他模型进行效果对比.结果表明,本文提出的负荷辨识模型综合精确度达到92%以上,各性能指标均优于其他模型. 相似文献
19.
20.
针对现有的非侵入式负荷监测方法难以准确识别具有相似电特性负荷的问题,提出了一种基于切换概率分布曲线对识别结果进行修正的非侵入式负荷监测方法.首先,将电流分解为各负荷的独立工作电流;其次,利用谐波特征对负荷进行初始识别;然后,利用已有数据训练BP神经网络,拟合出被识别负荷的切换概率分布曲线;最后,根据切换概率分布曲线对识别结果进行修正.利用实测数据进行分析,验证了该方法的有效性. 相似文献