首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The literature on the death and survival of foodborne pathogens in commercial mayonnaise, dressing, and sauces was reviewed and statistically analyzed with emphasis on Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes. The absence of reports of foodborne illness associated directly with the consumption of commercially prepared acidic dressings and sauces is evidence of their safety. Salmonella, E. coli O157:H7, E. coli, L. monocytogenes, Staphylococcus aureus, and Yersinia enterocolitica die when inoculated into mayonnaise and dressings. Historically, mayonnaise and dressings have been exempt from the acidified food regulations and have justly deserved this status due primarily to the toxic effect of acetic and to a lesser extent lactic and citric acids. These organic acids are inimical to pathogenic bacteria and are effective natural preservatives with acetic being the most effective in killing pathogenic bacteria at the pH values encountered in these products. Statistical analysis on data reported in the literature shows that the most important and significant factor in destroying pathogenic bacteria is pH as adjusted with acetic acid followed by the concentration of acetic acid in the water phase. The reported highest manufacturing target pH for dressings and sauces is 4.4, which is below the 4.75 pKa of acetic acid and below the reported inhibitory pH of 4.5 for foodborne pathogens in the presence of acetic acid. The overall conclusion is that these products are very safe. They should remain exempt from the acidified food regulations providing adequate research has been done to validate their safety, and the predominant acid is acetic and reasonable manufacturing precautions are taken.  相似文献   

2.
Bacterial pathogens may colonize meat plants and increase food safety risks following survival, stress hardening, or proliferation in meat decontamination fluids (washings). The objective of this study was to evaluate the ability of Escherichia coli O157:H7, Salmonella Typhimurium DT 104, and Listeria monocytogenes to survive or grow in spray-washing fluids from fresh beef top rounds sprayed with water (10 or 85 degrees C) or acid solutions (2% lactic or acetic acid, 55 degrees C) during storage of the washings at 4 or 10 degrees C in air to simulate plant conditions. Inoculated Salmonella Typhimurium DT 104 (5.4 +/- 0.1 log CFU/ml) died off in lactate (pH 2.4 +/- 0.1) and acetate (pH 3.1 +/- 0.2) washings by 2 days at either storage temperature. In contrast, inoculated E. coli O157:H7 (5.2 +/- 0.1 log CFU/ml) and L. monocytogenes (5.4 +/- 0.1 log CFU/ml) survived in lactate washings for at least 2 days and in acetate washings for at least 7 and 4 days, respectively; their survival was better in acidic washings stored at 4 degrees C than at 10 degrees C. All inoculated pathogens survived in nonacid (pH > 6.0) washings, but their fate was different. E. coli O157:H7 did not grow at either temperature in water washings, whereas Salmonella Typhimurium DT 104 failed to multiply at 4 degrees C but increased by approximately 2 logs at 10 degrees C. L. monocytogenes multiplied (0.6 to 1.3 logs) at both temperatures in water washings. These results indicated that bacterial pathogens may survive for several days in acidic, and proliferate in water, washings of meat, serving as potential cross-contamination sources, if pathogen niches are established in the plant. The responses of surviving pathogens in meat decontamination waste fluids to acid or other stresses need to be addressed to better evaluate potential food safety risks.  相似文献   

3.
壳寡糖抑菌性能的研究   总被引:1,自引:0,他引:1  
采用牛津杯法和共培养法研究壳寡糖对鸡源、猪源大肠杆菌(Escherichia coli)和沙门氏菌(Salmonella)及乳酸菌的抑制作用。结果表明,牛津杯法未检测到壳寡糖对病原菌的抑制作用;共培养法证实质量浓度为0.1 g/mL、0.2 g/mL和0.5 g/mL的壳寡糖对鸡源、猪源大肠杆菌和沙门氏菌均具有显著的抑菌作用(P<0.05),且随着壳寡糖质量浓度的升高,抑菌能力逐渐增强;0.2 g/mL的壳寡糖与乳酸菌共培养24 h对乳酸菌活菌数的影响不显著(P>0.05)。为开发具有抑制畜禽肠道病原菌生长、预防腹泻等作用的复合壳寡糖- 乳酸菌产品提供理论基础。  相似文献   

4.
Several studies have investigated the control of pathogens on alfalfa sprouts, and some treatments have been shown to be effective in reducing pathogen populations. However, control methods investigated thus far only provide pathogen control at a given point in the sprouting process and can affect germination. Competitive inhibition of pathogens with lactic acid bacteria might provide pathogen control throughout the sprouting process and up to consumption. The purpose of this study was to isolate and identify lactic acid bacteria from alfalfa sprouts to inhibit the growth of foodborne pathogens. Fifty-eight lactic acid bacteria isolates were obtained from alfalfa seeds and sprouts. These isolates were evaluated for inhibitory action against Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes by agar spot tests. All pathogens were inhibited by 32 (55%) of the isolates, S. enterica by 56 (97%), E. coli O157:H7 by 49 (84%), and L. monocytogenes by 41 (71%). The isolates were identified by the Analytical Profile Index evaluation of carbohydrate utilization. Isolates obtained from a sample of alfalfa seeds and identified as Lactococcus lactis subsp. lactis showed zones of inhibition of 4.0 mm or greater for all pathogens. One of these isolates, Lactococcus lactis subsp. lactis (L7), and an isolate previously obtained, Pediococcus acidilactici (D3), were evaluated for competitive inhibition of S. enterica, E. coli O157:H7, and L. monocytogenes in deMan Rogosa Sharpe agar and broth. Pathogen populations were significantly reduced by day 5. The selected isolates will be further evaluated in future studies for inhibitory action toward S. enterica, E. coli O157:H7, and L. monocytogenes during sprouting.  相似文献   

5.
This work aimed to assess the growth and survival of four foodborne pathogens (Escherichia coli O157:H7, Salmonella Typhimurium, Listeria monocytogenes, and Staphylococcus aureus) in beer. The effects of ethanol, pH, and storage temperature were investigated for the gram-negative pathogens (E. coli O157:H7 and Salmonella Typhimurium), whereas the presence of hops ensured that the gram-positive pathogens (L. monocytogenes and S. aureus) were rapidly inactivated in alcohol-free beer. The pathogens E. coli O157:H7 and Salmonella Typhimurium could not grow in the mid-strength or full-strength beers, although they could survive for more than 30 days in the mid-strength beer when held at 4°C. These pathogens grew rapidly in the alcohol-free beer; however, growth was prevented when the pH of the alcohol-free beer was lowered from the "as received" value of 4.3 to 4.0. Pathogen survival in all beers was prolonged at lowered storage temperatures.  相似文献   

6.
ABSTRACT: This study was conducted to determine the effects of ozonated water (1, 3, and 5 ppm) alone with different exposure times (0.5,1,3, or5min), and combinations of 3 ppm ozone with 1% organic acids (acetic, citric, or lactic acids) during 1-min exposure for inactivating Escherichia coli O157:H7 and Listeria monocytogenes on lettuce and to observe the regrowth of these pathogenic bacteria on treated lettuce during storage for 10 d at 15°C. Results showed that 5 ppm ozone treatment for 5 min gave 1.09-log and 0.94-log reductions of E. coli O157:H7 and L. monocytogenes , respectively, indicating insignificant reductions compared with 3 ppm ozone treatment for 5 min. Treatment with 3 ppm ozone combined with 1 % citric acid for 1 min immersing resulted in 2.31 - and 1.84-log reductions ( P < 0.05), respectively. During storage at 15°C for 10 d after combined treatment and packaging, populations of E. coli O157:H7 and L. monocytogenes increased to approximately 9.0-log colony forming unit (CFU) /g, indicating that this treatment did not have a residual antimicrobial effect during storage. Although the storage study did not show control of these pathogens, the combined ozone-organic acid treatment was more effective in reducing population levels of these pathogens on lettuce than individual treatments.  相似文献   

7.
The objectives of this study were to compare the effectiveness of various washing treatments for reducing Escherichia coli O157:H7, Salmonella sp., and Listeria monocytogenes populations on orange surfaces and to measure the effect of some of these treatments in preventing the transfer of pathogens during juice extraction. Orange surfaces inoculated with L. monocytogenes or a mixture of E. coli O157:H7 and Salmonella Typhimurium were washed by water spray and then sprayed with or dipped in water at 80°C for 1 min, 70% ethanol for 15, 30, or 45 s or 1, 2, or 4 min, 2 or 4% lactic acid solution at 55°C for 15, 30, or 45 s or 1, 2, or 4 min, or 200 mg/liter hypochlorite at pH 6.5 or 10 for 15 s. The surviving populations of these pathogens on the oranges were enumerated after each treatment. In a further stage, the ability of these pathogens to be transferred to the juice during extraction was tested. Juice was obtained from inoculated oranges that were subjected to selected treatments using chlorine, lactic acid, ethanol, and hot water as described above, and then bacterial counts in orange juice were determined. The application of these treatments reduced the populations of pathogens on orange surfaces by 1.9 to >4.9 log, 1.9 to >4.6 log, and 1.4 to 3.1 log cycles for E. coli O157:H7, Salmonella Typhimurium, and L. monocytogenes, respectively. The treatments using hot water or lactic acid showed greater reductions than other treatments. The time, antimicrobial concentration, and form of application affected the bacterial reduction. All treatments resulted in undetectable counts in the juice. Nevertheless, pathogens were recovered by the enrichment-plating method. Treatment of oranges before juice extraction may reduce the risk associated with consuming orange juice.  相似文献   

8.
Studies were conducted to determine the best concentration and exposure time for treatment of alfalfa seeds with levulinic acid plus sodium dodecyl sulfate (SDS) to inactivate Escherichia coli O157:H7 and Salmonella without adversely affecting seed germination. Alfalfa seeds inoculated with a five-strain mixture of E. coli O157:H7 or Salmonella Typhimurium were dried in a laminar flow hood at 21°C for up to 72 h. Inoculated alfalfa seeds dried for 4 h then treated for 5 min at 21°C with 0.5% levulinic acid and 0.05% SDS reduced the population of E. coli O157:H7 and Salmonella Typhimurium by 5.6 and 6.4 log CFU/g, respectively. On seeds dried for 72 h, treatment with 0.5% levulinic acid and 0.05% SDS for 20 min at 21°C reduced E. coli O157:H7 and Salmonella Typhimurium populations by 4 log CFU/g. Germination rates of alfalfa seeds treated with 0.5% levulinic acid plus 0.05% SDS for up to 1 h at 21°C were compared with a treatment of 20,000 ppm of calcium hypochlorite or tap water only. Treatment of alfalfa seeds with 0.5% levulinic acid plus 0.05% SDS for 5 min at 21°C resulted in a >3.0-log inactivation of E. coli O157:H7 and Salmonella.  相似文献   

9.
Nissen H  Maugesten T  Lea P 《Meat science》2001,57(3):291-298
Decontamination of meat or carcasses may have an effect in reducing the number of pathogens. Recontamination with other pathogens during cutting or packaging may, however, result in higher growth on decontaminated than on untreated meat due to the lack of competing non-pathogenic microorganisms. In this study we compared the growth of pathogens during storage at 10°C (worst case condition) on untreated meat and meat that had been decontaminated by steam vacuuming combined with spraying with 0.2 M lactic acid. Salmonella enteritidis inoculated on chicken multiplied quickly and reached log 7 cfu per cm(2) after 4 days of aerobic storage at 10°C, but growth was not significantly higher on decontaminated than on untreated chicken. The number of Yersinia enterocolitica inoculated on decontaminated pork skin reached log 9 cfu per cm(2) after 5 days of aerobic storage at 10°C. Overall, growth on vacuum-packed decontaminated and untreated pork under the same conditions was not significantly different, although there tended to be less growth on the untreated samples. The number of Escherichia coli O157:H7 on decontaminated beef increased by nearly 3 log cycles after 5 days of aerobic storage at 10°C compared to only a 1 log cycle increase on untreated beef. For the vacuum-packed beef, growth of E. coli O157:H7 on the fresh meat was very slow, while there was about a 3 log increase on the decontaminated beef. A higher average growth on the decontaminated beef was also found in an experiment with a very low inoculum (27 cfu per cm(2)). During storage of vacuum-packed samples there was multiplication of E. coli O157:H7 on the decontaminated beef, but virtually none on the untreated beef. This study shows that multiplication of S. enteritidis on chicken and Y. enterocolitica on pork skin was not significantly higher on decontaminated compared to untreated meat. The increased multiplication of E. coli O157:H7 on decontaminated beef, especially when vacuum-packed, gives cause for concern. Preventive measures might be a strict HACCP approach to the handling of the decontaminated meat before packaging or use of a protective culture of lactic acid bacteria.  相似文献   

10.
The ability of solutions of tripotassium phosphate (TPP) and fatty acids (lauric and myristic acids) to reduce populations of spoilage and pathogenic microorganisms associated with processed poultry was examined. In vitro studies were conducted with cultures of bacteria (Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella Typhimurium, and Staphylococcus aureus) and yeasts (Candida ernobii and Yarrowia lipolytica). Cultures of the bacteria and yeasts were suspended in solutions of TPP or mixtures of TPP with lauric or myristic acid and mixed for 5 min. Viable numbers (log CFU per milliliter) in the suspensions were enumerated on microbiological agar. Results indicated that TPP solutions are highly bactericidal toward gram-negative bacteria and that mixtures of TPP and fatty acids are highly microbicidal toward gram-negative bacteria, gram-positive bacteria, and yeasts. The microbicidal activity of mixtures of TPP and fatty acids toward the native bacterial flora of skin of processed broiler carcasses was also examined. Skin samples were washed in mixtures of TPP and fatty acid, and the populations of total aerobic bacteria, campylobacters, enterococci, E. coli, lactic acid bacteria, pseudomonads, staphylococci, and yeasts in the skin rinsates were enumerated on the appropriate microbiological media. Results indicated that washing the skin in mixtures of TPP and fatty acids produced significant reductions in the number of aerobic bacteria, campylobacters, E. coli, pseudomonads, and yeasts recovered from skin rinsates, but there was no significant reduction in the populations of enterococci, lactic acid bacteria, or staphylococci. These findings indicate that mixtures of TPP and fatty acids possess microbicidal activity against several microorganisms associated with processed poultry and that these solutions could be useful as microbicides to reduce the populations of some bacteria and yeasts associated with some poultry processing operations.  相似文献   

11.
This study examined the prevalence, counts, and subtypes of Campylobacter, Salmonella, Listeria monocytogenes, verotoxigenic Escherichia coli (VTEC), and E. coli on raw retail chicken breast with the skin on versus the skin off. From January to December 2007, 187 raw skin-on chicken breasts and 131 skin-off chicken breasts were collected from randomly selected retail grocery stores in the Region of Waterloo, Ontario, Canada. Campylobacter isolates were recovered from a higher proportion of the skin-off chicken breasts, 55 (42%) of 131, than of the skin-on chicken breasts tested, 55 (29%) of 187 (P = 0.023). There was no difference in the proportion of Salmonella isolates recovered from the two meat types (P = 0.715): 40 (31%) of 131 skin-off chicken breasts versus 61 (33%) of 187 skin-on chicken breasts. L. monocytogenes isolates were recovered from a statistically lower proportion of the skin-off chicken breasts, 15 (15%) of 99, than of the skin-on chicken breasts, 64 (34%) of 187 (P = 0.001). There was no difference in the proportion of E. coli isolates recovered from the skin-off chicken breasts, 33 (33%) of 99, than from the skin-on chicken breasts, 77 (41%) of 187 (P = 0.204). VTEC was detected on a single skin-off chicken breast. Campylobacter jejuni was the most frequent species isolated on both types of chicken meat: skin-on, 48 (87%) of 55, and skin-off, 51 (94%) of 54. Salmonella serotypes Kentucky and Heidelberg and L. monocytogenes serotype 1/2a were the most frequently detected serotypes from both skin-off and skin-on chicken breasts. Although there appeared to be a trend toward higher enumeration values of these pathogens and E. coli on the skin-on chicken, the differences did not exceed 1 log. This study suggested that skin-off chicken breast may represent a higher risk of consumer exposure to Campylobacter, a similar risk for Salmonella, VTEC, and E. coli, and a lower risk for L. monocytogenes than skin-on chicken breast.  相似文献   

12.
Current industry chilling practices with and without the application of 2% L-lactic acid were compared for their effectiveness at reducing levels of Salmonella, Yersinia enterocolitica, and Campylobacter coli on pork variety meats. Pork variety meats (livers, intestines, hearts, and stomachs) were inoculated individually with one of the three pathogens and subjected to five different treatment combinations that included one or more of the following: water wash (25°C), lactic acid spray (2%, 40 to 50°C), chilling (4°C), and freezing (-15°C). Samples were analyzed before treatment, after each treatment step, and after 2, 4, and 6 months of frozen storage. Results showed that when a lactic acid spray was used in combination with water spray, immediate reductions were approximately 0.5 log CFU per sample of Salmonella, 0.8 log CFU per sample of Y. enterocolitica, and 1.1 log CFU per sample of C. coli. Chilling, both alone and in combination with spray treatments, had little effect on pathogens, while freezing resulted in additional 0.5-log CFU per sample reductions in levels of Salmonella and Y. enterocolitica, and an additional 1.0-log CFU per sample reduction in levels of C. coli. While reductions of at least 1 log CFU per sample were observed on variety meats treated with only a water wash and subsequently frozen, samples treated with lactic acid had greater additional reductions than those treated with only a water spray throughout frozen storage. The results of this study suggest that the use of lactic acid as a decontamination intervention, when used in combination with good manufacturing practices during processing, causes significant reductions in levels of Salmonella, Y. enterocolitica, and C. coli on pork variety meats.  相似文献   

13.
This is the first study to report kinetic data on the survival of a range of significant milk-borne pathogens under commercial-type pasteurization conditions. The most heat-resistant strain of each of the milk-borne pathogens Staphylococcus aureus, Yersinia enterocolitica, pathogenic Escherichia coli, Cronobacter sakazakii (formerly known as Enterobacter sakazakii), Listeria monocytogenes, and Salmonella was selected to obtain the worst-case scenario in heat inactivation trials using a pilot-plant-scale pasteurizer. Initially, approximately 30 of each species were screened using a submerged coil unit. Then, UHT milk was inoculated with the most heat-resistant pathogens at ~10(7)/mL and heat treated in a pilot-plant-scale pasteurizer under commercial-type conditions of turbulent flow for 15s over a temperature range from 56 to 66°C and at 72°C. Survivors were enumerated on nonselective media chosen for the highest efficiency of plating of heat-damaged bacteria of each of the chosen strains. The mean log(10) reductions and temperatures of inactivation of the 6 pathogens during a 15-s treatment were Staph. aureus >6.7 at 66.5°C, Y. enterocolitica >6.8 at 62.5°C, pathogenic E. coli >6.8 at 65°C, C. sakazakii >6.7 at 67.5°C, L. monocytogenes >6.9 at 65.5°C, and Salmonella ser. Typhimurium >6.9 at 61.5°C. The kinetic data from these experiments will be used by the New Zealand Ministry of Agriculture and Forestry to populate the quantitative risk assessment model being developed to investigate the risks to New Zealand consumers from pasteurized, compared with nonpasteurized, milk and milk products.  相似文献   

14.
Cylindrical samples of beef semitendinosus muscle were dipped into an inoculum of Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella typhimurium. After air drying for 10 min, samples were sanitized by dipping in fumaric acid (1.0 or 1.5%), lactic acid (1%) or acetic acid (1.0%) solutions for 15 or 30 s at 55C. The 1.5% fumaric acid was most inhibitory against L. monocytogenes, resulting in inactivation of this pathogen after 7 days of storage. Samples treated with 1.0% and 1.5% fumaric acid solutions for 30 sec gave 2.54 and 1.51 log10 reductions, respectively, in S. typhimurium population compared to nontreated samples. The 1.5% fumaric acid treatments for 30 s exerted the maximum inhibition of E. coli O157:7. Acetic and lactic acid treatments were significantly less effective in reducing populations of the tested pathogens than fumaric acid treatments. As the sanitizing time in acid solutions increased from 15 to 30 s, the numbers of surviving organisms were reduced significantly.  相似文献   

15.
No information has been available on the prevalence of pathogens in fresh produce in Japan. In the present study, information was collected on the occurrence of contamination by Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes in iceberg lettuce in a Japanese retail store. A total of 419 samples of lettuce that had been harvested in different districts and/or by different producers from July 2008 to March 2009 were examined. A multiplex PCR method was used to simultaneously identify the three bacterial pathogens. No pathogenic bacteria, including Salmonella, E. coli O157:H7, and L. monocytogenes, were detected from any of the samples with this highly sensitive and validated procedure. The aerobic bacteria plate counts and coliform bacteria counts in lettuce throughout the examination period did not show any seasonal trends, and the numbers were comparable to those reported by others from around the world. Based on the results of this study, we concluded that none of the three major pathogens were present in this limited survey of iceberg lettuce sold by a retailer in Japan.  相似文献   

16.
The presence of some indicator microorganisms and pathogenic bacteria in guacamole sampled from restaurants and street vendors, and the behavior of Salmonella spp. , Staphylococcus aureus, and Escherichia coli O157:H7 were studied in avocado pulp. Coliform, yeast and mold populations showed a wide dispersion, in agreement with the diversity of sanitary conditions observed among places sampled. The frequency of Salmonella spp. , Listeria monocytogenes, and E. coli were 1.3, 16.0, and 60.0 %, respectively; with higher numbers among street vendors. Populations of E. coli ranged from 29 to 3800 NMP/g and S. aureus from 2.95 to 5.35 log CFU/g. Thirteen out of 16 hemolytic L. monocytogenes strains were pathogenic for mice. In avocado pulp Salmonella spp. and E. coli O157:H7 showed a lag phase close to 3 h, and a generation time of 54 min and 1.23 h, respectively. No growth of pathogens was observed in avocado pulp stored at 4-7C.  相似文献   

17.
Sterile beef tissue was inoculated with either Salmonella typhimurium, Escherichia coli O157:H7 or Listeria monocytogenes Scott A and washed with 23C distilled water, 1% lactic acid or 1% acetic acid. The washed tissue was subjected to simulated dry chilling or spray chilling followed by storage at 5C. The washed tissue was stored at 5C for up to 21 days at 26% relative humidity, and total bacterial populations were determined by plating on nonselective and selective agars. There was no significant difference in the surviving populations of S. typhimurium, Escherichia coli O157:H7, or L. monocytogenes after storage, irrespective of chilling method. The surviving populations of bacteria were significantly lower on acid washed adipose tissue, when compared to the comparable water washed tissue. These results indicate that although injury and recovery of pathogenic bacteria may occur as a result of organic acid carcass sanitizing treatments, there was no practical significance of this phenomenon after 3 days of storage.  相似文献   

18.
Radiosensitization of Listeria monocytogenes, Escherichia coli, Salmonella Typhimurium, and aerobic microflora was evaluated in broccoli florets coated by antimicrobial coatings and treated with different doses of γ-radiation. Broccoli florets were inoculated with aerobic microflora isolated from broccoli and with pathogenic bacteria (L. monocytogenes, E. coli, and Salmonella Typhimurium) at 10(6) CFU/ml. Inoculated florets were then coated with methylcellulose-based coating containing various mixtures of antimicrobial agents: organic acids plus lactic acid bacteria (LAB metabolites), organic acids plus citrus extract, organic acids plus citrus extract plus spice mixture, and organic acids plus rosemary extract. Coated florets were irradiated with various doses (0 to 3.3 kGy), and microbial analyses were conducted to calculate the D(10)-value and relative sensitivity. All antimicrobial coatings had almost the same effect of increasing the radiosensitivity of L. monocytogenes (from 1.31 to 1.45 times) to γ-irradiation. The coating containing organic acid plus citrus extract was the most efficient formulation for increasing the radiosensitization of E. coli and aerobic microflora, by 2.40 and 1.76 times, respectively, compared with the control without the antimicrobial coating. The coating containing organic acids plus LAB metabolites was the most effective formulation for increasing the radiosensitization (by 2.4 times) of Salmonella Typhimurium. Results suggest that the spice extract, when mixed with organic acids and citrus extract, might protect E. coli and aerobic microflora from the effects of γ-irradiation.  相似文献   

19.
The effects of plant extracts against pathogenic bacteria in vitro are well known, yet few studies have addressed the effects of these compounds against pathogens associated with muscle foods. A series of experiments was conducted to determine the effectiveness of a commercially available, generally recognized as safe, herb extract dispersed in sodium citrate (Protecta One) or sodium chloride (Protecta Two) against Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes associated with beef. In the first experiment, E. coli O157:H7, Salmonella typhimurium, and L. monocytogenes inoculated onto beef and subjected to surface spray treatments with 2.5% solutions of Protecta One or Protecta Two were not affected by immediate application (day 0) of the herbal extracts. However, after 7 days of storage at 4 degrees C, E. coli O157:H7 was reduced by >1.3 log10 CFU/cm2 by Protecta Two; L. monocytogenes was reduced by 1.8 and 1.9 log10 CFU/cm2 by Protecta One and Protecta Two, respectively; Salmonella typhimurium was not reduced >0.3 log10 CFU/cm2 by either extract by day 7. In the second experiment, 2.5% Protecta Two (wt/vol or wt/wt) added to inoculated lean and adipose beef trim, processed, and packaged as ground beef chubs (80% lean, 20% adipose), did not reduce pathogen populations >0.5 log10 CFU/g up to 14 days at 4 degrees C. In the third experiment, surface spray treatments of beef with 2.5% lactic acid or 2.5% solutions of Protecta One or Protecta Two, vacuum packaged, and stored up to 35 days at 4 degrees C did reduce E. coli O157:H7, L. monocytogenes, and Salmonella Typhimurium slightly. These studies suggest that the use of herb extracts may afford some reductions of pathogens on beef surfaces; however, the antimicrobial activity may be diminished in ground beef by adipose components.  相似文献   

20.
Considerable speculation has occurred concerning the potential for higher numbers of foodborne pathogens on organically grown produce compared with produce not grown organically. The microflora composition of spring mix or mesclun, a mixture of multiple salad ingredients, grown either by organic or conventional means was determined. Unwashed or washed spring mix was obtained from a commercial California fresh-cut produce processor who does not use manure in their cultivation practices. Fifty-four samples of each type of product were supplied over a 4-month period. Analysis included enumeration of total mesophiles, psychrotrophs, coliforms, generic Escherichia coli, lactic acid bacteria, yeasts, and molds. In addition, spring mix was analyzed for the presence of Salmonella and Listeria monocytogenes. The mean populations of mesophilic and psychrotrophic bacteria, yeasts, molds, lactic acid bacteria, and coliforms on conventionally grown spring mix were not statistically different (P > 0.05) from respective mean populations on organically grown spring mix. The mean population of each microbial group was significantly higher on unwashed spring mix compared with the washed product. Of the 14 samples found to contain E. coli, eight were from nonwashed conventional spring mix, one was from washed conventional spring mix, and four were from nonwashed organic spring mix. Salmonella and L. monocytogenes were not detected in any of the samples analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号