首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The structure and physical properties of 2'-sugar substituted O -(2-methoxyethyl) (MOE) nucleic acids have been studied using molecular dynamics simulations. Nanosecond simulations on the duplex MOE[CCAACGTTGG]-r[CCAACGUUGG] in aqueous solution have been carried out using the particle mesh Ewald method. Parameters for the simulation have been developed from ab initio calculations on dimethoxyethyl fragments in a manner consistent with the AMBER 4.1 force field database. The simulated duplex is compared with the crystal structure of the self-complementary duplex d[GCGTATMOEACGC]2, which contains a single modification in each strand. Structural details from each sequence have been analyzed to rationalize the stability imparted by substitution with 2'- O -(2-methoxyethyl) side chains. Both duplexes have an A-form structure, as indicated by several parameters, most notably a C3' endo sugar pucker in all residues. The simulated structure maintains a stable A-form geometry throughout the duration of the simulation with an average RMS deviation of 2.0 A from the starting A-form structure. The presence of the 2' substitution appears to lock the sugars in the C3' endo conformation, causing the duplex to adopt a stable A-form geometry. The side chains themselves have a fairly rigid geometry with trans , trans , gauche +/- and trans rotations about the C2'-O2', O2'-CA', CA'-CB' and CB'-OC' bonds respectively.  相似文献   

2.
A normal-mode and statistical mechanical calculation was carried out to determine the vibrational normal modes, contribution of internal fluctuations to the free energy, and hydrogen bond disruption of DNA triplex poly(dA).2poly(dT). The calculation was performed on both the x-ray fiber diffraction model with a N-type sugar conformation, and a newly proposed model with a S-type sugar conformation. Our calculated normal modes for the S-type structure are in better agreement with observed IR spectra for samples in D2O solution. We also find that the contribution of internal fluctuations to free energy, premelting hydrogen bond disruption probability, and hydrogen bond melting temperatures for the Hoogsteen and Watson-Crick hydrogen bonds all show that the S-type structure is dynamically more stable than the N-type structure in a nominal solution environment. Therefore our calculation supports experimental findings that the triplex d(T)n.d(A)nd(T)n most likely adopts a S-type sugar conformation in solution or at high humidity. Our calculations, however, do not preclude the possibility of an N-type conformation at lower humidities.  相似文献   

3.
The pBR322 recombinant plasmids DNA products, which purified by phenol-extract and equilibrium centrifugation in CsCl-ethidium bromide gradients, have been shown as mainly spatial conformation of covalently closed circular DNA (i.e. cccDNA) by agarose gel electrophoresis for homogeneity detection. Laser Raman spectra in the region 450-1750 cm-1 have been obtained for the circular double-stranded plasmids DNA molecule in an aqueous solution, indicating not only contain those marker peaks of secondary structure as in conventional B-form of DNA, but also present both 854 and 1083 cm-1 diagnostic bands of reflecting the vibration state of deoxyribosyl phosphodiester backbone. The present analysis have demonstrated relationship between the superhelical state for cccDNA and the two conformational marker bands that can be considered as the tertiary structure marker on plasmids DNA. Because of markedly Raman hypochromicity of charecter band 1378cm-1 of dT in contrast to liear DNA molecule, as well as the carbonyl double bond vibration line of dT have shifted to higher wave number position, the base stacking analysis represent occurrence of both increase in staking reaction activity of dT, and injury of a number of the Hoogsteen hydrogen bond between dA and dT with exist supercoil structure in cccDNA.  相似文献   

4.
Two-dimensional 1H NMR spectroscopy was used to determine the solution structure of the double-stranded DNA oligonucleotide d(5'-CGCATATAGCC-3'): d(5'-GGCTAXATGCG-3'), where X is 1-(2-O-methyl-beta-D-arabinofuranosyl)thymine. The structure determination was based on a total relaxation matrix analysis of NOESY cross-peak intensities using the MARDIGRAS program. The improved RANDMARDI procedure was used during the calculations to include the experimental "noise" in the NOESY spectra. The NOE-derived distance restraints were applied in restrained molecular dynamics calculations. Twenty final structures each were generated for the modified DNA duplex from both A-form and B-form DNA starting structures. The root-mean-square deviation of the coordinates for the 40 structures was 0.82 A. The duplex adopts a normal B-DNA-type helix, and the spectra as well as the structure show that the modified nucleotide X adopts a C2'-endo (S) sugar conformation. There are no significant changes in the helix originating from the modified nucleotide. The CH3O group on X is directed toward the major groove, and there seems to be free space for further modifications at this position.  相似文献   

5.
6.
X-ray fiber diffraction of poly(dA).poly(dT) subjected to variation in the relative humidity, has allowed us to demonstrate the effects of temperature on the conformation of the polynucleotide. When the temperature of the poly(dA).poly(dT) is greater than 30 degrees C and the relative humidity near 80%, a new diffraction pattern is obtained. We observe a transition between the classical alpha B' form of poly(dA).poly(dT) and a double helical structure, B*, which remains stable at a temperature up to 70 degrees C. This new conformation of poly(dA).poly(dT) is a right-handed double helix with 11.4 nucleotide pairs per turn and a pitch of 36.7 A.  相似文献   

7.
We have built computer models of triple helical structures with a third poly(dT) strand Hoogsteen base paired to the major groove of a poly(dA).poly(dT) Watson-Crick (WC) base-paired duplex in the canonical A-DNA as well as B-DNA. For the A-DNA form, the sugar-phosphate backbone of the third strand intertwines and clashes with the poly(dA) strand requiring a radical alteration of the duplex to access the hydrogen bonding sites in the major groove. In contrast, when the duplex was in the canonical B-DNA form, the third strand was readily accommodated in the major groove without perturbing the duplex. The triple helical model, with the duplex in the B-DNA form, was equilibrated for 400ps using molecular dynamics simulations including water molecules and counter-ions. During the entire simulations, the deoxyriboses of the adenine strand oscillate between the S-type and E-type conformations. However, 30% of the sugars of the thymine strands-II & III switch to the N-type conformation early in the simulations but return to the S-type conformation after 200ps. In the equilibrium structure, the WC duplex portion of the triplex is unique and its geometry differs from both the A- or B-DNA. the deoxyriboses of the three strands predominantly exhibit S-type conformation. Besides the sugar pucker, the major groove width and the base-tilt are analogous to B-DNA, while the X-displacement and helical twist resemble A-DNA, giving a unique structure to the triplex and the Watson & Crick and Hoogsteen duplexes.  相似文献   

8.
The crystal structure of the RNA/DNA hybrid r(GAAGAGAAGC). d(GCTTCTCTTC) has been solved and refined at 2.5 A resolution. The refinement procedure converged at R = 0.181 for all reflections in the range 20.0-2.5 A. In the crystal, the RNA/DNA hybrid duplex has an A' conformation with all but one of the nucleotide sugar moieties adopting a C3'- endo (N) conformation. Both strands in the double helix adopt a global conformation close to the A-form and the width of the minor groove is typical of that found in the crystal structures of other A-form duplexes. However, differences are observed between the RNA and DNA strands that make up the hybrid at the local level. In the central portion of the duplex, the RNA strand has backbone alpha, beta and gamma torsion angles that alternate between the normal gauche -/ trans / gauche + conformation and an unusual trans / trans / trans conformation. Coupled with this so-called 'alpha/gamma flipping' of the backbone torsion angles, the distance between adjacent phosphorous atoms on the RNA strand systematically varies. Neither of these phenomena are observed on the DNA strand. The structure of the RNA/DNA hybrid presented here differs significantly from that found in solution for this and other sequences. Possible reasons for these differences and their implications for the current model of RNase H activity are discussed.  相似文献   

9.
The crystal and molecular structures of two forms of 8-bromo-2',3'-O-isopropylideneadenosine have been determined by X-ray methods. In one form, the molecular structure has planar conformation in the sugar moiety and no intramolecular hydrogen bond. On the other hand, the molecular structure of the second form has C(2')-endo conformation and an intramolecular hydrogen bond. No stacking interaction between adjacent bases is found in either form, but two modes of the base-pairing hydrogen bond exist in the second form.  相似文献   

10.
We propose that water of hydration in contact with the double helix can exist in several states. One state, found in the narrow groove of poly(dA).poly(dT), should be considered as frozen to the helix, i.e., an integral part of the double helix. We find that this enhanced helix greatly effects the stability of that helix against base separation melting. Most water surrounding the helix is, however, melted or disassociated with respect to being an integral part of helix and plays a much less significant role in stabilizing the helix dynamically, although these water molecules play an important role in stabilizing the helix conformation statically. We study the temperature dependence of the melting of the hydration spine and find that narrow groove nonbonded interactions are necessary to stabilize the spine above room temperature and to show the broad transition observed experimentally. This calculation requires that synergistic effects of nonbonded interactions between DNA and its hydration shell affect the state of water-base atom hydrogen bonds. The attraction of waters into narrow groove tends to retain waters in the groove and compress or strain these hydrogen bonds.  相似文献   

11.
Parallel version of AMBER 4.1 was ported and optimised on the Indian parallel supercomputer PARAM OpenFrame built around Sun Ultra Sparc processors. This version of AMBER program was then used to carry out molecular dynamics (MD) simulations on 5'-TGACCAGCTGGTC-3', a substrate for PvuII enzyme. MD simulations in water are carried out under following conditions: (i) unconstrained at 300 K (230 ps); (ii) unconstrained at 283 K (500 ps); (iii) Watson-Crick basepair constrained at 283 K (1 ns); and (iv) Watson-Crick basepair constrained with ions at 283 K (1.2 ns). In all these simulation studies, the molecule was observed to be bending and maximum distortions in the double helix around was seen around the G7:C7' basepair, which is the phosphodiester bond that is cleaved by PvuII. Analysis of MD simulation with ions carried out for 1.2 ns also pointed out that the conformation of double helix alternates between a conformation close to B-form and close to A-form. It is argued that a bent non-standard conformation is recognised by the PvuII enzyme. The maximum bend occurs at the G7:C7' region, weakening the phosphodiester bond and allows His48 to get placed in such a fashion to permit the scission through a general base mechanism. The bending and distortion observed is a property of the sequence which acts as a substrate for PvuII enzyme. This is confirmed by carrying out MD studies on the Dickerson's sequence d(CGCGAATTCGCG)2 as a reference molecule, which practically does not bend or get deformed.  相似文献   

12.
The three-dimensional structure of an intramolecular triple helix whose three strands have been linked by a hexaethylene glycol chain, and selectively 13C-enriched in position C1' on the third strand was investigated by NMR spectroscopy and constrained molecular mechanics calculations. Starting from different initial conformations, we show that the NOE constraints determined by the complete relaxation matrix calculation and iterative back-calculations allowed us to reach the same final restrained triple helix, taking into account implicitly the solvent effect. We conclude that this triplex adopted a B-type conformation rather than a A-type. The sugar pucker was found predominantly in the S-type conformation, in the range of C2'-endo geometry.  相似文献   

13.
14.
By the techniques of interferon induction in primary rabbit kidney cells "superinduced" with metabolic inhibitors, ultraviolet absorbance-temperature profiles, sensitivity to pancreatic ribonuclease A, and sucrose velocity gradient ultracentrifugation, a number of reactions between double-helical RNA and single-stranded RNA or DNA homopolymers were investigated. The polymers involved in these studies were poly(adenylic acid), poly(uridylic acid), poly(ribothymidylic acid), poly(5-bromouridylic acid), poly(deoxythymidylic acid), poly(deoxyuridylic acid), poly(3-methyluridylic acid), poly(2'-O-methyluridylic acid), and poly(2'-azido-2'-deoxyuridylic acid). Two different reaction courses, both leading to the formation of triple helices, were noted: (1) poly(Ux)-poly(A) + poly(Uy) leads to poly(Ux)-poly(A)-poly(Uy) if the Tm of poly(Ux)-poly(A) was higher than the Tm of poly(Uy)-poly(A); (2) poly(Ux)-poly(A) + poly(Uy) leads to poly(Uy)-poly(A)-poly(Ux) if the Tm of poly(Ux)-poly(A) was lower than the Tm of poly(Uy)-poly(A). In these equations, the homopolymer written to the left of poly(A) implies Watson-Crick hydrogen bonding whereas the polymer to the right of poly(A) is involved in Hoogsteen hydrogen bonding.  相似文献   

15.
High resolution NMR data on UNCG and GNRA tetraloops (where N is any of the four nucleotides and R is a purine) have shown that they contain ribonucleosides with unusual 2'-endo/anti and 3'-endo/syn conformations, in addition to the 3'-endo/anti ones which are regularly encountered in RNA chains. In the current study, Raman spectroscopy has been used to probe these nucleoside conformations and follow the order (hairpin) to disorder (random chain) structural transitions in aqueous phase in the 5-80 degreesC temperature range. Spectral evolution of GCAA and GAAA tetraloops, as formed in very short hairpins with only three G.C base pairs in their stems (T m >60 degreesC), are reported and compared with those previously published on UUCG and UACG tetraloops, for which the syn orientation of the terminal guanine as well as the 2'-endo/anti conformation of the third rC residue have been confirmed by means of vibrational marker bands. Raman data obtained as a function of temperature show that the first uracil in the UUCG tetraloop is stacked and the two middle residues (rU and rC) are in the 2'-endo/anti conformation, in agreement with the previously published NMR results. As far as the new data concerning the GNRA type tetraloops are concerned, they lead us to conclude that: (i) in both cases (GCAA and GAAA tetraloops) the adenine bases are stacked; (ii) the second rC residue in the GCAA tetraloop has a 3'-endo/anti conformation; (iii) the sugar pucker associated with the third rA residue in both tetraloops possibly undergoes a 3'-endo/2'-endo interconversion as predicted by NMR results; (iv) the stem adopts a regular A-form structure; (v) all other nucleosides of these two GNRA tetraloops possess the usual 3'-endo/anti conformation.  相似文献   

16.
We have analyzed and compared the molecular structures and dynamics of DNA duplexes containing a nick or a gap of one nucleotide where the base in front of the gap is a guanine. The continuous strand has the sequence 5'(CAGAGTCXCTGGCTC) where the residue X is absent for the nick, 14-mer, and where it is a G residue for the gap. Duplexes were formed with the two corresponding 7-mers. Neither of these is phosphorylated adjacent at the nick site, but it is a good model for a single strand break. For the nick structure, the quantitative NMR data show that the global conformation is very close to canonical B-form DNA, but it displays enhanced local flexibility. For the gap structure, we observe only one species in which the extra G is well stacked into the helix. The two half-helices around this residue also show a B-form conformation. As with the nick duplex, the adjacent G imino protons show enhanced exchange with solvent. The gap does not close completely. Using distance constraints, MD calculations show that the nick conformation is very close to a duplex with no lesion but is indeed more flexible in the central part. The gapped structure shows two families of conformations. One is close to B-DNA, the other is significantly kinked at the gap which reduces the size of the cavity. We observe a spine of hydration within the cavities, similar, but of different geometry in the two cases.  相似文献   

17.
The fundamental conformational states of right-handed double helical DNA, the A- and B-forms, are associated with distinct puckers of the sugar moieties. The furanose conformation itself is affected by the steric and electronic nature of the ring substituents. For example, a strongly electronegative substituent at the C2' position, such as in the 2'-deoxy-2'-fluoro ribo furanosyl analogue, will drive the conformational equilibrium towards the C3'- endo type (north). Conversely, the 2'-deoxy-2'-fluoro arabino furanosyl modification with opposite stereochemistry at C2' appears to have a preference for a C2'- endo type pucker (south). Incorporation of 2'-fluoroarabinofuranosyl thymines was previously shown to enhance the thermodynamic stability of B-DNA duplexes. We have determined the crystal structures of the B-DNA dodecamer duplexes [d(CGCGAASSCGCG)]2and [d(CGCGAASTCGCG)]2with incorporated 2'-deoxy-2'-fluoroarabinofuranosyl thymines S (south) at 1.55 A resolution. In the crystal structures, all S residues adopt an O4'- endo conformation (east), well compatible with an overall B-form duplex geometry. In addition to the increased rigidity of S nucleosides, a clathrate-like ordered water structure around the 2'-fluorines may account for the observed larger thermodynamic stability of DNA duplexes containing 2'-deoxy-2'-fluoroarabino thymidines.  相似文献   

18.
An investigation has been made into the effect produced by photo-induced pyrimidine cross-links upon the secondary structure of DNA. We have studied the effect of uv irradiation upon the B in equilibrium A transition in DNA brought about by a change of solvent from 70 to 80% ethanol. Circular dichroism (CD) was used to monitor the conformational changes. However, we first showed by means of laser Raman spectroscopy that CD is a reliable monitor of the conformational change, even though the DNA is aggregated in 80% alcohol solutions. It is suggested that this aggregation stabilizes the A form through lateral interaction between the helices. The uv irradiation experiments show that pyrimidine-dimer cross-links induced into the B-form DNA will lock it irreversibly into that conformation and prevent it from going to the A form in 80% EtOH solution. The A-form DNA can tolerate a few cross-links but converts cooperatively to the B form if a larger number of cross-links is introduced. Irradiation-induced pyrimidine cross-links create locally denatured regions in B-form DNA. Upon continued irradiation, the entire DNA moelcule becomes denatured.  相似文献   

19.
Molecular dynamics simulation in explicit solvent and continuum solvent models are applied to investigate the relative stability of A- and B-form helices for two DNA sequences, dA10-dT10 and dG10-dC10 in three structural forms. One structural form is based on an unrestrained molecular dynamics (MD) trajectory starting from a canonical B-DNA structure, the second is based on a MD trajectory starting in a canonical B-DNA structure with the sugars constrained to be C2'-endo and the third simulation started from a canonical A-DNA structure with the sugars constrained to C3'-endo puckers. For the energetic analysis, structures were taken as snapshots from nanosecond length molecular dynamics simulations computed in a consistent fashion in explicit solvent, applying the particle mesh Ewald method and the Cornell et al. force field. The electrostatic contributions to solvation free energies are computed using both a finite-difference Poisson-Boltzmann model and a pairwise Generalized Born model. The non-electrostatic contributions to the solvation free energies are estimated with a solvent accessible surface area dependent term. To estimate the gas phase component of the relative free energy between the various structures, the mean solute internal energies (determined with the Cornell et al. molecular mechanics potential including all pairwise interactions within the solute) and estimates of the solute entropy (using a harmonic approximation) were used. Consistent with experiment, the polyG-polyC (GC) structures are found to be much more A-phillic than the polyA-polyT (AT) structures, the latter being quite A-phobic. The dominant energy components responsible for this difference comes from the internal and van der Waal energies. A perhaps less appreciated difference between the GC and AT rich sequences is suggested by the calculated salt dependence which demonstrates a significantly enhanced ability to drive GC rich sequences towards an A-form structure compared to AT rich sequences. In addition to being A-phobic, the AT structure also has a noticably larger helical repeat than GC and other mixed sequence duplexes, consistent with experiment. Analysis of the average solvent density from the trajectories shows hydration patterns in qualitative agreement with experiment and previous theoretical treatments.  相似文献   

20.
The effect of the substitution of a L-nucleoside for a D-nucleoside in the duplex d(G-C-G-T-G-C-G).d(C-G-C-A-C-G-C) was studied by UV and NMR spectroscopy. These unnatural oligonucleotides have potential for antisense DNA technology [Damha, M. J., Giannaris, P. A., & Marfey, P. (1994) Biochemistry (preceding paper in this issue)]. The thermal stability of such duplexes is lower than that of the natural one and is dependent on the nucleotide type and/or sequence. Interestingly, inversion of the chirality of thymidine but not adenosine coincides with a large stabilizing enthalpy change. The structure of the heterochiral duplex d(G1-C2-G3-(L)T4-G5-C6-G7).d(C8-G9-C10-A11-C12-G13- C14), where (L)T denotes the mirror image of the natural thymidine, has been determined by NMR spectroscopy. The sugar conformation was determined using the sum of coupling constants and the distances using a model free relaxation matrix approach. The torsion angles of the backbone follow from 3JHH, 3JHP, and 4JHP coupling constants. The structure of the duplex was calculated by metric matrix distance geometry followed by simulated annealing. The structure is close to that of B-DNA. The base pair formed by (L)T and A is of the Watson-Crick type. All sugars adopt an S-type pucker. The incorporation of the L-sugar in the duplex is accomplished by changes in the backbone torsion angles around the phosphates and the glycosidic torsion angle of (L)T. The modification induces changes in the natural strand as well. The structure exhibits an unusual interaction between the aromatic rings of the (L)T4.A11 and G3.C12 base pairs, which provides a plausible explanation of the unusual thermodynamic properties of the duplex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号