首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 87 毫秒
1.
一、前言 当前全世界普遍重视节省能源,降低产品能耗已成为重要的研究课题。构成节能对象的机器设备中,有众多的热交换器,因此,研究提高现有传热设备的性能和探求新的强化方法,对于降低能耗具有重要意义。  相似文献   

2.
多孔表面管沸腾传热试验研究   总被引:6,自引:0,他引:6  
针对烧制成多孔表面管,进行了传热性能研究,试验表明:多孔管可以显著地强化多孔侧沸腾传热,民同规格光滑管传热性能试验对比,其沸腾给热系数比光滑管提高5-6倍。  相似文献   

3.
强化管内沸腾换热实验研究   总被引:2,自引:0,他引:2  
主要研究在低过热度下微槽对流动沸腾换热特性的影响,分别以单工质甲醇和甲醇与甲苯的混合物为工质对不同流量情况下光管、直槽管和螺旋槽管的流动沸腾换热特性进行了实验研究。研究结果表明:对单工质甲醇来说,螺旋槽管可以明显起到强化传热作用,而且流量越低,强化传热效果越明显。对混合工质来说,当流量较低时,螺旋槽管强化传热效果不明显,而在流量较高时,强化传热效果比较明显。无论是单工质还是混合工质,直槽管在实验所能达到的壁面温度条件下不能起到明显的强化传热效果。还给出了螺旋槽管强化传热的定性解释。  相似文献   

4.
多孔表面新型复杂结构优化沸腾传热的实验研究   总被引:1,自引:0,他引:1  
报道了R11在烧结多孔表面开槽时沸腾传热的实验研究,实验发现,与普通槽道和双空隙层多孔表面相比,沸腾换热增强,沸腾表现为液体灌注、槽道起泡、底部蒸干三个区,对特定的多孔层,开槽可获得更好的换热效果。带槽道的多孔表面实验件与均匀多孔表面相比,在相同壁面过热度(θ)条件下,热流密度(q)提高2-10倍,临界热流密度提高2-4倍。  相似文献   

5.
内表面烧结型多孔管的流动沸腾换热   总被引:1,自引:0,他引:1       下载免费PDF全文
采用流动沸腾传热试验平台,研究了2 m长铁基烧结型内表面多孔管竖直管内流动沸腾传热特性,利用流动沸腾传热学基本原理及公式计算了传热过程中的热通量、沸腾传热系数及相关参数,并考察了过热度和流速对多孔管流动沸腾传热性能的影响.结果表明:烧结型表面多孔管的流动沸腾传热能力优于同条件下的光滑管,内表面沸腾传热系数是同尺寸光滑管...  相似文献   

6.
管内复合强化传热技术及机理分析   总被引:4,自引:0,他引:4       下载免费PDF全文
文中对管内强化传热及复合强化传热技术进行了在紊流流动下的阻力和传热特性分析,并给出了几种复合强化传热技术的试验研究结果。提出了螺旋槽带中插入旋向相反的部分管长扭带是行之有效,效果明显的复合强化传热技术。  相似文献   

7.
本文阐述了在我校高压电加热水回路装置上所进行的亚临界及近临界压力区水平沸腾管传热特性的试验研究结果。试验管为φ25×2mm不锈钢管,试验参数范围为压力从16.7MPa到22.6MPa、质量流速从600kg/m~2·s到1200kg/m~2·s、热负荷从200kw/m~2到530kw/m~2。试验得出了亚临界及近临界压力区水平沸腾管中不同质量流速、热负荷和含汽率条件下沿管子周界的壁温分布曲线,确定了水平沸腾管中发生传热恶化的位置和壁温飞升值。  相似文献   

8.
介绍了螺旋槽管强化传热技术的原理,在锅炉空气预热器及发电厂高压加热器的应用实例。节能效果显著,值得在电力、化等行业推广应用。  相似文献   

9.
不锈钢螺旋槽管水平强化传热的实验研究   总被引:4,自引:0,他引:4  
本文对低导热系数的水平不锈钢螺旋槽管进行了凝结换热实验研究,并对不锈钢管的壁温测量进行了探索,通过分析得到了水平单头不锈钢螺旋槽管的水测对流换热系数准则方程。  相似文献   

10.
强化管外CFC11与HCFC123沸腾换热系数的对比试验研究   总被引:2,自引:0,他引:2  
本文通过强化管外CFC11与HCFC123沸腾换热系数的对比试验分析与研究,分别得出了HCFC123与CFC11沸腾换热系数,并对这两种工质的实际应用情况进行了分析。  相似文献   

11.
SurfacesInvestigationofEnhancedBoilingHeatTransferfromPorousSurfaces¥LinZhiping;MaTongze;ZhangZhengfang(InstituteofEngineerin...  相似文献   

12.
A mechanism is proposed for nucleate pool boiling heat transfer along with a general model for both pure liquids and binary mixtures. A combined physical model of bubble growth is also proposed along with a corresponding bubble growth model for pure liquids on smooth tubes. Using the general model and the bubble growth model for pure liquids, an analytical model for nucleate pool boiling heat transfer of pure liquids on smooth tubes is developed.  相似文献   

13.
Sand spots, attached to a copper ball surface by means of polyvinyl acetate adhesive and distributed over the surface with areal density that ranges between one spot per 1.18 cm2 (for low‐density spots) and one spot per 0.51 cm2 (for high‐density spots), serve as a temporary heat transfer enhancer during the quenching in liquid nitrogen. Highest heat flux densities, achieved during quenching, lie in the range 10.8 to 20.2 W/cm2, depending on the sand layer structure. Application of the temporary enhancer increases an amount of heat, evacuated by highly effective nucleate and transition boiling, by factor of 4.5 as compared with the bare sample. The process of sand layer preparation, data acquisition peculiarities, relationship between heat exchange efficiency and the spots areal density, along with sand grit size are discussed in this paper.  相似文献   

14.
An experimental investigation has been carried out to determine the heat transfer coefficient during pool boiling of water over a bundle of vertical stainless steel heated tubes of 19.0 mm diameter and 850 mm height. The p/D of bundle was 1.66 and was placed inside a glass tube of 100 mm diameter and 900 mm length. The data were acquired for the heat flux range of 2–32 kWm− 2.  相似文献   

15.
This paper presents a series of experimental results on a passive augmentation technique of boiling heat transfer by supplying solid particles in liquid. A cylindrical heater 0.88 mm in diameter is placed in saturated water, in which a lot of mobile particles exist, and the nucleate and film boiling heat transfer characteristics are measured. Particle materials used were alumina, glass, and porous alumina, and the diameter ranged from 0.3 mm to 2.5 mm. Particles are fluidized by the occurrence of boiling without any additive power, and the heat transfer is augmented. The maximum augmentation ratio obtained in this experiment reaches about ten times the heat transfer coefficient obtained in liquid alone. The augmentation ratio is mainly affected by the particle material, diameter, and the height of the particle bed set at no boiling condition. The augmentation mechanism is discussed on the basis of the experimental results. © 2001 Scripta Technica, Heat Trans Asian Res, 31(1): 28–41, 2002  相似文献   

16.
Experimental studies were made on heat transfer on a horizontal platinum wire during nucleate pool boiling in nonazeotropic refrigerant binary mixtures at pressures of 0.25 to 0.7 MPa and at heat fluxes up to CHF. The boiling features of the mixtures and the single-component substances were observed by photography. The relationship between the boiling behavior and the reduction of heat transfer coefficients in binary mixtures is discussed in order to propose a correlation useful for predicting the present experimental data over a wide range of low to high heat fluxes. It is shown that the correlation is applicable to alcoholic mixtures. The physical meaning of k, which was introduced to evaluate the effect of heat flux on the reduction of a heat transfer coefficient, is clarified based on measured nucleate pool boiling heat transfer data and visual observations of the boiling features. © 1998 Scripta Technica, Heat Trans Jpn Res, 27(7): 535–549, 1998  相似文献   

17.
在一水平圆形加热表面上通过实验考察了饱和池核沸腾和过冷池核沸腾时CaCO3垢的生成对传热的影响。结果表明,在饱和池核沸腾和过冷池核沸腾的初始阶段沸腾传热系数均呈先降低后升高、达到一个最大值后稳定降低的趋势,而且在初始阶段出现了负污垢热阻现象。在相同操作条件下,过冷池核沸腾传热系数明显低于饱和池核沸腾传热系数。在分析污垢的生成和生长影响表面活化中心的基础上,对污垢的形成对沸腾传热的影响进行了机理分析。  相似文献   

18.
To investigate the size effect on the characteristics of boiling heat transfer, boiling behavior of FC-72 in heated vertical miniature circular tubes immersed in a liquid pool was experimentally studied. Two AISI 304 stainless steel tubes with inner diameters of 1.10 mm and 1.55 mm correspondingly, were heated by swirled Ni-Cr wire heaters and sealed in Lucite blocks by silicon adhesive. Both the top and the bottom ends of the circular test sections were open to the liquid pool. The boiling curves and heat transfer coefficients were obtained experimentally. The boiling behaviors at the outlets of the miniature tubes were also visualized with a digital video camera. Experimental results show that the tube geometry has a significant effect on the boiling characteristics. Vapor blocking at the outlet of the smaller circular tube with a diameter of 1.10 mm caused severe boiling hysteresis phenomena. The CHF decreased with reducing in tube size.  相似文献   

19.
Experimental and theoretical studies were carried out on the natural convective boiling heat transfer and critical heat flux (CHF) in uniformly heated vertical annular tubes filled with a porous medium and submerged in saturated water and R11 liquid. The heat transfer experimental results were compared with the case without a porous medium. It was shown that heat transfer is greatly enhanced by the porous medium in the region of low heat flux. By adopting a simple mixing flow model, a generalized approximate relationship was derived for predicting the CHF. The prediction agrees relatively well with the CHF experimental data. © 2000 Scripta Technica, Heat Trans Asian Res, 29(6): 447–458, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号