首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cast stainless steel may experience embrittlement when it is exposed approximately to 300°C for a long period. In the present investigation, the three classes of the thermally-aged CF8M specimen were prepared using an artificially-accelerated aging method. After the specimens were held for 300, 1800 and 3600hrs. at 430°C, respectively, the specimens were quenched in water which is at room temperature. Load versus load line displacement curves andJ- R curves were obtained using the unloading compliance method,J IC values were obtained using the ASTM E 813–87 and ASTM E 813–81 methods. In addition to these methods,J IC values were obtained using the SZW (stretch zone width) method described in JSME S 001–1981. The results of the unloading compliance method areJ Q = 543.9kj/m2 for virgin materials. The values ofJ IC for the degraded materials at 300, 1800 and 3600hrs. are obtained 369.25kJ/m2, 311.02kJ/2, 276.7kJ/2, respectively. The results obtained by the SZW method are compared with those obtained by the unloading compliance method. Both results are quite similar. Through the elastic-plastic fracture toughness test, it is found that the value ofJ IC is decreased with an increase of the aging time.  相似文献   

2.
Fracture toughness JIC and KIC tests were performed on A516 Gr70 carbon steel plate at the temperature ranging from −160°C to 600°C, and test results were analyzed according to ASTM E 813 and ASTM E 399. Unloading compliance J-integral tests were performed on ITCT specimens. The relation between the JIC value and the test temperature was obtained. It was concluded that the temperature ranging from −15°C to 600°C is the upper shelf region of ductile-brittle transition temperature, and in this temperature range, fracture toughness JIC values decreased with increasing temperature. The ductile brittle transition temperature of the material may be around −30°C. In the region near −30°C, the tendency of JIC to decrease with decreasing temperature was significant.  相似文献   

3.
The objective of this paper is to develop a nondestructive method for estimating the fracture toughness (K IC) of CrMoV steels used as the rotor material of steam turbines in power plants. To achieve this objective, a number of CrMoV steel samples were heat-treated, and the fracture appearance transition temperature (FATT) was determined as a function of aging time. Nonlinear ultrasonics was employed as the theoretical basis to explain the harmonic generation in a damaged material, and the nonlinearity parameter of the second harmonic wave was the experimental measure used to be correlated to the fracture toughness of the rotor steel. The nondestructive procedure for estimating theK IC consists of two steps. First, the correlations between the nonlinearity parameter and the FATT are sought. The FATT values are then used to estimateK IC, using theK IC versus excess temperature (i.e.,T-FATT) correlation that is available in the literature for CrMoV rotor steel.  相似文献   

4.
This paper proposesJ and CTOD estimation schemes applied to fracture toughness testing, covering typical homogeneous and bi-material specimens. Recommendations are based on the plastic limit analysis (either slip line field or finite element limit analyses), assuming the rigid plastic material behavior. The main outcome of the present study is that theJ and CTOD estimation schemes (both codified and non-codified), recommended for homogeneous specimens, can be equally used for bi-material specimens with interface cracks. The effect of yield strength mismatch in bi-material specimens on the theJ-integral and CTOD is discussed.  相似文献   

5.

Hydrogen embrittlement has been recognized as one of major degradation mechanisms causing the decrease of ductility and fracture toughness of several kinds of materials. In accordance with the demand for hydrogen fuels, it becomes more important to ensure safety of relevant facilities like pressure vessels, storage tanks and so on. The objective of this study is to examine fracture resistance of American Petroleum Institute (API)-X70 steel under highly pressurized hydrogen gaseous condition. The extended finite element method (XFEM) was adopted to predict J-R curves via a crack growth simulation approach. At first, preliminary analyses for SM490A carbon steel were carried out to demonstrate applicability of the XFEM, of which result was comparable to test data within 14 %. Subsequently, iterative numerical analyses were conducted to calibrate appropriate damage parameters for the API-X70 steel by using notched round bar specimens. Finally, crack growth simulations of 1T-compact tension (CT) specimens were performed adopting the calibrated parameters. JIC values determined from predicted J-R curves were compared with 1/2T-CT CTOD test data and relevant constraint effect was discussed.

  相似文献   

6.
The conventional fracture mechanics parameters KIC and/or JIC are used as fracture toughness criteria necessary for the start of crack propagation under plane strain conditions. These criteria are defined only for small-scale yielding or infinitesimal deformation, though actual fractures involve large plastic deformation. Hence, measurement of fracture resistance during crack propagation is difficult with the conventional parameters.Estimating the mechanical conditions around the propagating crack tip is very useful for reducing damage during accidental fracture. Therefore, establishing a criterion for crack propagation with large-scale yielding is very important for not only science fields but also some industrial fields. For fractures with large-scale yielding, micro- or mesoscale damage processes in the crack tip vicinity have to be considered.In this study, Gurson's constitutive model for void occurrence and growth was introduced into the finite element method to discuss failure behavior in the crack tip vicinity. Fast crack propagation behavior under high-speed deformation was simulated using the moving finite element method based on the Delaunay automatic triangulation. The excellent far-field integral path independence of the T* integral was verified for pure mode I fast crack propagation and non-straight crack propagation under mixed mode conditions. The void growth conditions near the crack propagation path were evaluated.  相似文献   

7.
Generally the fretting fatigue S-N curve has two regions: one is the high cycle (low stress) region and the second is the low cycle (high stress) region. In a previous paper we introduced the fretting fatigue life estimation methods in high cycle region by considering the wear process; with this estimation method the fretting fatigue limit can be estimated to be the crack initiation limit at the contact edge. In this paper we estimate the low cycle fretting fatigue life based on a new critical distance theory, modified for a high stress region using ultimate tensile strength σB and fracture toughness KIC. The critical distance for estimating low cycle fretting fatigue strength was calculated by interpolation of the critical distance on the fretting fatigue limit (estimated from σw0 and ΔKth) with critical distance on static strength (estimated from σB and KIC). By unifying this low cycle fretting fatigue life estimation method with the high cycle fretting fatigue life estimation method, which was presented in the previous paper, we can estimate the total fretting life easily. And to confirm the availability of this estimation method we perform the fretting fatigue test using Ni-Mo-V steel.  相似文献   

8.
The paper presents an ultrasonic based Lamb waves propagation method for identifying and measuring the damage location in a material for SHM. The present work determines the experimental and analytical effects of various parameters on the sensitivity of damage detection and a methodology is proposed for estimating and measuring the location of damage in the test specimens. An experimental setup is used for generating Ao Lamb waves by calibrating ultrasonic pulse generation for optimal value of the parameters. The experiment is performed on two carbon fiber reinforced plastic bars in both undamaged and damaged state, where the two damaged states are (1) having a cut partway through the bar, perpendicular to the long axis of the bar and (2) having a circular hole. The Lamb wave propagation parameters are calibrated using the ultrasonic pulse generator test setup and the method was compared with direct measured values of ultrasonic instrument.  相似文献   

9.
The ultrasonic pulsed Doppler technique known as the ultrasonic velocity profile (UVP) method has been widely used in many engineering fields. The analysis algorithms of the UVP, the number of pulse repetitions (Npulse), noise and reflector conditions, etc. all affect the measurement accuracy. Npulse is related to the temporal resolution, thus to improve this resolution it must be set as low as possible. However, it is known that the measurement accuracy of the instantaneous velocity becomes worse with decreasing values of Npulse. In this study, UVP analysis algorithms including the fast Fourier transform (FFT), autocorrelation, and the wavelet transform (WT) were compared via simulations and experiments using varying values of Npulse and the signal-to-noise ratio (SNR). We show that there is an appropriate Npulse for each algorithm that depends on the SNR; specifically, the value of Npulse increases with decreasing SNR. The difference between the algorithms for the velocity data was small under low noise conditions. However, a FFT with a Gaussian interpolation produced the best result under noisy conditions. In contrast the WT was relatively unaffected by noise. Therefore, a WT is the preferred choice for measuring velocity distributions if high sampling measurement is not required.  相似文献   

10.
The stretch zone width (SZW) data for 15‐5PH steel CTOD specimens fractured at ?150°C to + 23°C temperature were measured based on focused images and 3D maps obtained by extended depth‐of‐field reconstruction from light microscopy (LM) image stacks. This LM‐based method, with a larger lateral resolution, seems to be as effective for quantitative analysis of SZW as scanning electron microscopy (SEM) or confocal scanning laser microscopy (CSLM), permitting to clearly identify stretch zone boundaries. Despite the worst sharpness of focused images, a robust linear correlation was established to fracture toughness (KC) and SZW data for the 15‐5PH steel tested specimens, measured at their center region. The method is an alternative to evaluate the boundaries of stretched zones, at a lower cost of implementation and training, since topographic data from elevation maps can be associated with reconstructed image, which summarizes the original contrast and brightness information. Finally, the extended depth‐of‐field method is presented here as a valuable tool for failure analysis, as a cheaper alternative to investigate rough surfaces or fracture, compared to scanning electron or confocal light microscopes. Microsc. Res. Tech. 75:1155–1158, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
A number of polycarbonate (PC) specimens, having the same compact tension type configuration but with different initial crack lengths, was tested at −12°C under Mode I type loading. The pop-in loads and corresponding displacements at the loading pins were plotted and connected by a common curve. The value of KIC was determined using the method first proposed by Gurney and Hunt and was in close agreement with values reported by others. It is concluded that the pop-in load versus displacement curve is equivalent to a locus describing crack propagation under plane-strain conditions and suggests a new approach for determining KIC for ductile solids.  相似文献   

12.
The objective of this study was to investigate the influence of heat treatment parameters, namely temperature and exposure time on surface roughness, shear strength, hardness and density of Southern pine (Pinus echinata) and aspen (Populus grandidentata) samples. The specimens were exposed to two different temperature levels of 120–200 °C for time spans of 2–8 h. A stylus type portable profilometer was employed to evaluate the surface characteristics of the samples by taking measurements across the grain orientation. Average roughness (Ra), mean peak-to-valley height (Rz) and maximum roughness (Rmax) were used to evaluate surface roughness of the samples exposed to various heat treatment schedules. Comten testing unit was also used to determine shear strength and Janka hardness of the control and heat treated specimens. Based on the results of this study Southern pine samples had more enhanced surface quality but lower hardness values than those of aspen specimens with increased temperature and time of heat treatment schedules. It was found that heat treatment adversely affected hardness and shear strength properties of all types of samples. Reduction in shear strength values of Southern pine and aspen samples ranged from 23.31% to 68.59% and from 4.67% to 48.55%, respectively as compared to those of control samples. It appears that influence of heat treatment on all properties of the samples was more pronounced with increasing temperature and exposure time.  相似文献   

13.
The explicit formulation of theJ-integral and theM-integral is constructed in terms of the stress intensity factor and the higher order stress coefficients for Mode II cracks under small or large scale yielding. Furthermore, the stress intensity factor and the higher order stress coefficients as well are computed with the aid of the two-stateJ- and theM - integral, which is found to be accurate and efficient. It is found that the contribution from the higher order singularities to theJ - integral is closely related to the configuration of the plastic zone.  相似文献   

14.
The design, specifications, fabrication, testing and potential use of a series of sinusoidal profile precision roughness specimens are described. These specimens were designed primarily to provide a means for optimum transfer of an accurate roughness average Ra value from primary to secondary laboratories. However, properties of the specimens also make them very useful for evaluating instrumentation and computational algorithms designed to measure the statistical parameters and functions now being investigated in many laboratories. Specimens with an Ra value of 1.0 μm and spatial wavelengths of 40, 100 and 800 μm are being fabricated. For the wavelength of 100 μm, specimens are also being fabricated with Ra values of 3.0 and 0.3 μm. Fabrication using numerically controlled diamond lathes has produced specimens with very high quality sinusoidal profile waveforms with uniform Ra values across the surfaces and with very low amounts of waviness over a test area of about 2 cm2.  相似文献   

15.
This paper is to report enhancement of engineering J estimation for semi-elliptical surface cracks under tensile load. Firstly, limitation of the sole solution suggested by Zahoor is shown for reliable structural integrity assessment of thin-walled nuclear pipes. An improved solution is then developed based on extensive 3D FE analyses employing deformation plasticity theory for typical nuclear piping materials. It takes over the structure of the existing solution but provides new tabulated plastic influence functions to cover a wide range of pipe geometry and crack shape. Furthermore, to facilitate easy prediction of the plastic influence function, an alternative simple equation is also developed by using a statistical response surface method. The proposed H 1 values can be used for elastic-plastic fracture analyses of thin-walled pipes with a circumferential surface crack subjected to tensile loading.  相似文献   

16.
The frictional behaviour was experimentally investigated of alumino-silicate ceramics (3Al2O3, 2SiO2) rubbing against a hard steel surface under static and kinetic friction conditions. Tests were carried out on a pin-on-disc machine under both dry and wet contact conditions. Results showed that the frictional behaviour under either static or kinetic conditions was highly dependent on the ceramic body phase transformation which in turn was controlled by the firing temperature during ceramic processing and treatment. Lower friction values were evident when using specimens of ceramic bodies containing a high mullite crystalline phase, which are attained at high firing temperatures. Both the running speed and applied loads had insignificant effects at high loads.During kinetic friction tests lower frictional values were displayed than for static friction tests under wet contact conditions, and under dry conditions when using high mullite ceramic bodies. For specimens of ceramics fired at relatively low temperatures, kinetic friction tests produced higher frictional values than static friction tests.  相似文献   

17.
This work concerns stress and fatigue analysis of stamping tools made of cast iron with an essentially pearlitic matrix and containing foundry defects. Our approach consists at first, in coupling the stamping numerical processing simulations and structure analysis in order to improve the tool stiffness geometry for minimizing the stress state and optimizing their fatigue lifetime. The method consists in simulating the stamping process by considering the tool as a perfect rigid body. The estimated contact pressure is then used as boundary condition for FEM structure loading analysis of the tool. The result of this analysis is compared with the critical stress limit depending on the automotive model. The acceptance of this test allows calculating the fatigue lifetime of the critical zone by using the SN curve of corresponding load ratio. If the prescribed tool life requirements are not satisfied, then the critical region of the tool is redesigned and the whole simulation procedures are reactivated. This method is applied for a cast iron EN-GJS-600-3. The stress-failure (SN) curves for this material is determined at room temperature under push pull loading with different load ratios R?=?σ min/σ max?=??2, R?=??1 and R?=?0.1. The effects of the foundry defects are determined by SEM observations of crack initiation sites. Their presence in tested specimens is associated with a reduction of fatigue lifetime by a factor of 2. However, the effect of the load ratio is more important.  相似文献   

18.
Systematic three-dimensional elastic–plastic finite element analyses are carried out for a semi-elliptical surface crack in plates under tension. Various aspect ratios (a/c) of three-dimensional fields are analyzed near the semi-elliptical surface crack front. It is shown that the developed JQ annulus can effectively describe the influence of the in-plane stress parameters as the radial distances (r/(J/σ0)) are relatively small, while the approach can hardly characterize it very well with the increase of r/(J/σ0) and strain hardening exponent n. In order to characterize the important stress parameters well, such as the equivalent stress σe, the hydrostatic stress σm and the stress triaxiality Rσ, the three-parameter JQTTz approach is proposed based on the numerical analysis as well as a critical discussion on the previous studies. By introducing the out-of-plane stress constraint factor Tz and the QT term, which is determined by matching the finite element analysis results, the JQTTz solution can predict the corresponding three-dimensional stress state parameters and the equivalent strain effectively in the whole plastic zone. Furthermore, it is exciting to find that the values of J-integral are independent of n under small-scale yielding condition when the stress-free boundary conditions at the side and back surfaces of the plate have negligible effect on the stress state along the crack front, and the normalized J tends to a same value when φ equals about 31.5° for different a/c and n. Finally, the empirical formula of Tz and the stress components are provided to predict the stress state parameters effectively.  相似文献   

19.
The possibility of increasing the signal-to-noise ratio by the method of echo-signal spectrum splitting jointly with spectrum extrapolation is considered. The essence of the method proposed is that the echo-signal spectrum known within a given frequency range (f min, f max) is divided into several subranges (f min i , f max i ). The construction of the AR model of the echo-signal spectrum allows the spectrum extrapolation from each subrange by an interval (f min e , f max e that far exceeds the initial interval. This means that, with the use of one echo signal, a set of signals can be obtained, the adding together of which increases the signal-to-noise ratio and ensures an ultrafine beam resolution for flaw images. The presented results of processing echo signals, which were obtained in numerical and model experiments, confirm the efficiency of the proposed technique for processing echo signals.  相似文献   

20.
A computer program to calculate the strip temperature heated in the continuous annealing furnace was developed, using the zone method for radiative heat transfer analysis with the measured gas temperature in the furnace. Using theF E Operator, the present study considered the effects of soot and transient species, in addition to the H2O−CO2 gas mixture on the gas radiative heat transfer. The predicted strip temperature distribution forF E=1.05 represented well the measured data. The maximum difference in the heat flux transfered to the strip from the combustion gas forF E=1.0 (without soot and transient species gas radiation) and 1.05 (with soot and transient species gas radiation) was about 15%. The present study also investigated the effects of line speed and thickness variations on the strip temperature, establishing the bases for the on-line computer model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号