首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High temperature abrasive wear performance of Inconel 617, Stellite 6 alloys and X32CrMoV33 hot work tool steel was investigated. The wear resistance of the latter is degraded at 750 °C due to its inferior oxidation resistance. Extensive oxidation co-occuring with abrasive wear at 750 °C leads to substantial material loss due to the lack of a protective oxide scale, sufficiently ductile to sustain the abrasion without extensive spalling. The wear resistance of the Inconel 617 and Stellite 6 alloys, on the other hand, improves at 750 °C owing to protective oxides that sustain the abrasion without spalling.  相似文献   

2.
C. Katsich  E. Badisch  Manish Roy  G.R. Heath  F. Franek   《Wear》2009,267(11):1856-1864
Many engineering components are subjected to erosive wear at elevated temperature. As erosive wear at elevated temperature is governed by the synergistic effect of erosive wear and oxidation, it is possible to modify surfaces of the components in order to achieve improved performances. In view of the above, two different types of hardfacing alloys of Fe–Cr–C were designed incorporating Nb, Mo and B to ensure improved performances at elevated temperature. In order to achieve the above objective, mild steel was hardfaced with these alloys under optimised gas metal arc welding (GMAW) condition. The microstructures of the hardfaced coating was characterised with the help of optical microscopy (OM) and scanning electron microscopy (SEM). The mechanical properties of these coatings were obtained by means of micro indenter. Erosive wear of these coatings was evaluated for four different temperatures, for two different impact angles and at one impact velocity. The morphologies and the transverse sections of the worn surfaces are examined with SEM. The erosive wear of these coatings were compared with conventional M2 tool steel. Results indicate that erosion rate of these coatings increases with increase of test temperature and impact angles. Among various coatings, Fe–Cr–C coating containing higher amount of Nb, Mo and B exhibits best erosion resistance particularly at elevated temperature.  相似文献   

3.
Iron‐based hardfacing alloys are widely used to protect machinery equipment. A strong correlation is given between microstructure and chemical composition of welding deposit with the resulting wear behaviour. Concerning precipitation of metallurgical hard phases and synthetic added hard particles, the bonding strength of the hard phases in the metallic matrix seems to play a dominating role to obtain high wear resistance. The main objective of this study was to evaluate the wear behaviour for pure abrasion, combined impact/abrasion and high impact wear, respectively, for four different Fe‐based hardfacing alloys. Tests were performed with a standard ASTM G65 dry‐sand/rubber‐wheel tester. An impeller–tumbler apparatus enabled investigation of impact abrasion wear tests. Additional wear tests with high impact loading were performed on a drop hammer apparatus. Fracture surface analysis was carried out after drop hammer testing and results were correlated with microstructure and interfacial bonding behaviour of precipitations in metallic matrix. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Machinery and equipment used in abrasive environments, such as the mining industry, suffer from severe wear. In order to understand wear and to prolong the life time of the machinery, it is important to understand how materials respond to wear depending on the environmental and tribological conditions imposed.This paper exposes a comparative study between the influence of two abrasive environments (dry and slurry) on hard particle coatings and steels. To study this, the 3-body wear behaviour was evaluated in a dry environment using a continuous abrasion test (CAT) and in a slurry environment using a slurry steel wheel abrasion test (SSWAT) method. Both tests are capable of experimentally modelling the high stress wear at 45 N and 216 N, using quartz sand as an abrasive. The tests were performed on two types of coatings processed by sintering and hardfacing and martensitic steel was used as a reference. The wear was indicated as volume loss by measuring the samples before and after the tests. Furthermore, the specific wear energy was calculated in order to have a fundamental understanding about the material's response to wear. A correlation between the wear rate and the particle brakeage index (PBI) was done for the dry conditions using different loads, in order to explain the interdependence between the two parameters and the change in the wear mechanism between the two loads. The influence of load on the wear of the materials showed different wear mechanisms on coatings compared to the steel in the same environmental conditions. However, a change in wear mechanism at different load levels was observed, which might be directly dependent on the change of the particle's motion from sliding to rolling combined with the change in their shape and size. The results showed that the need to study the influence of different abrasive conditions on the material wear is crucial in order to improve the lifetime and the cost efficiency of the machinery used in such environments. The hard-particle coatings showed comparatively low wear rates promising a great potential in improving the lifetime of industrial equipments in different environments.  相似文献   

5.
After impact wear, the very surface of stainless austenitic CrMnCN steel and austenitic MnC Hadfield steel revealed a thin fully amorphous layer followed by a layer of nanocrystals embedded in an amorphous surrounding, which was supported by a severely cold worked layer of austenite below. The new high-strength stainless steel contained C + N = 0.82 mass% and exceeded Hadfield steel in respect to proof strength, elongation, work to fracture and wear rate.  相似文献   

6.
A comparative study was carried out of the behaviour of plasma sprayed NiCrBSiFe and WC–NiCrBSiFe alloys subjected to conditions which simulate a post-combustion gas atmosphere from a coal-fired boiler combustor. The study first evaluates the effects of thermal exposure at high temperatures on the microstructure of the coatings and on the adherence between substrate (austenitic stainless steel) and coatings. The oxidation rates of these coatings in atmospheres with 3–3.5% of free oxygen at 773 and 1073 K were then evaluated. The effect of WC on the low-velocity corrosion–erosion behaviour produced by the impact of fly ashes in the gas stream at high temperatures (773 and 1073 K) was assessed under impact angles of 30° and 90°. Finally, the eroded surfaces were analysed using scanning electron microscopy in order to characterize the ash embedment phenomena and the operating erosive micromechanisms.  相似文献   

7.
Two ferritic stainless steels (409Nb and 434L) manufactured through powder metallurgical techniques were wear tested at different temperature conditions (up to 300 °C). Two sliding speeds were used, and tests were carried out against a wrought austenitic stainless steel. Materials’ wear performance was characterized through friction coefficients and analysis of wear tracks was carried out through scanning electron microscopy. Results have shown an adhesive wear mechanism. Oxidized ferrite particles have also been found on wear tracks.  相似文献   

8.
To extend the lifetime of the sinter grate used to crush the sinter cake into smaller pieces for steel fabrication, a study was undertaken to investigate which wear processes are primarily responsible for limiting the lifetime of the sinter grate. Several wear processes could be identified. The sinter temperature which is up to 800 °C causes temperature-induced material ageing and oxidation. The falling of the sinter cake onto the sinter grate causes high impacts, erosion and abrasive wear. There is enormous economic pressure, which makes the most cost-efficient solution the most attractive one, not the technically “best” coating material; thus, Fe–Cr–C hardfacing alloys are mostly used. In view of the above, four different alloys which are promising for this application were studied with regard to their wear resistance. Each wear mechanism was investigated in a special test tribometer. Fatigue wear caused by multiple impacts and abrasion was tested in the high-temperature continuous impact abrasion test. Materials behaviour in heavy single impacts was evaluated in the single impact test. Characterisation of microstructure and wear behaviour was performed by optical microscopy and scanning electron microscopy. The results obtained with the help of the different measurement techniques were linked and set into comparison to calculate the volumetric wear of the specimen. Aim of this work was to investigate the influence of the material parameters such as macrohardness, hard phase content, microstructure coarseness on the wear resistance in impact loading and abrasive applications at high temperatures. Results also indicate that the matrix ability to bind carbides at high temperature as well as the matrix hardness at high temperatures strongly influence the wear resistance in the different tests. Those material parameters get correlated to the wear rates in different material demands. The test results indicate that at higher temperatures material fatigue becomes a major wear-determining factor which makes the matrix hardness and the matrix ability to bind carbides at high temperatures very important. Especially, in abrasive wear, a certain content of hard phases is also necessary to keep the wear to a lower level. It could also be shown that in impact loading applications, a coarse microstructure is a disadvantage.  相似文献   

9.
Three types of carbon/carbon composites were fabricated using pitch as matrix material. Performance of these composites was evaluated under continuous impact abrasion tests (CIAT). Towards this purpose, a novel testing equipment was designed and developed at AC2T. Tests were carried out at room temperature and 500 °C. The angle of impact was chosen to be 45° and 90°. Analysis of tribological performance was carried out by mass loss. Characterization of the worn surface was done by means of scanning electron microscopy (SEM) and optical 3D profilometry. In this work, it was shown that wear rates are higher for 45° impact angle compared to 90° for all composites investigated. Fibre debonding and fibre pull out was observed to be the dominating wear mechanisms for these composites during CIAT procedure under normal impact abrasion. Removal of chunk of material contributes to wear under oblique impact abrasion.  相似文献   

10.
In this work nickel based hardfacing alloy (Colmonoy 5) was deposited on 316 L (N) stainless steel substrate to study the effects of aging treatment on coating microstructure, wear and corrosion properties. Coatings, deposited through plasma transferred arc (PTA) welding process, were aged at 923 K for 5000 h. Microstructural characterization studies carried out by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the coarsening of dendrites and precipitation of Cr23C6 particles in the aged coating. The wear behavior of the as deposited and aged coatings was compared in room temperature (RT) and high temperature (823 K) under dry sliding wear condition (pin-on-disc configuration). At RT, aged coating experienced more wear loss when compared to as-deposited. At high temperature, the wear loss was almost same with similar operating wear mechanisms (tribo-oxidation) for both as-deposited and aged coating. From pitting corrosion studies, it was found that aged coatings are more prone to pitting when compared to the as-deposited coatings.  相似文献   

11.
Abstract

Using powder metallurgy, composites of austenitic stainless steel were produced along with unreinforced stainless steel mixed with titanium, cobalt and molybdenum particles. Wear resistance of the materials was measured by a two body pin on disc wear tester. SiC abrasive papers of 80 and 220 mesh sizes were used as abrasive media. Wear tests were performed under loads of 10, 20 and 30 N at room temperature. The abrasive wear measurements showed that the softer, unreinforced austenitic stainless steel exhibited higher mass loss than the composites. Furthermore, the abrasive wear resistance of the reinforced austenitic stainless steel composites increased with increasing FeTi, FeMo, or Co volume content. In addition, the wear rate against the 80 grade SiC abrasive paper increased more than against the 220 grade SiC abrasive paper.  相似文献   

12.
Cr5系堆焊合金碳、铬过渡形式对高温磨损性能影响的研究   总被引:1,自引:0,他引:1  
在轧辊堆焊复合制造中,为节约贵重碳化物及提高堆焊材料的性价比,在堆焊熔敷金属成分基本保持不变的条件下,利用埋弧堆焊研究药芯焊丝碳、铬不同加入方式对堆焊合金微观组织与性能的影响。通过磨损试样前后硬度、高温拉伸、常温韧性与高温磨损量的量化,结合磨损前后金相组织、扫描电镜等辅助手段分析微观组织、加入方式与耐磨性之间的关系;结果表明:堆焊金属600℃的高温耐磨性能与合金高温强度及硬度呈正比,并随合金韧性的增加耐磨性能提高;直接加石墨和铬粉的药芯焊丝堆焊熔敷金属的耐磨性能优于在焊丝中直接加碳化铬的堆焊熔敷金属。高温磨损是合金氧化、切削、疲劳开裂与剥离等多种因素作用的结果,理想的高温耐磨堆焊材料不仅与采用的堆焊合金系有关,还与堆焊金属的显微组织、抗氧化性能及高温强韧性等因素有关。同时得出改变合金的加入方式是不添加变质剂及外加激振法外,能够促使组织均匀及强化熔敷金属的另一种方式。  相似文献   

13.
Ji Hui Kim  Kang Hee Ko  Seung Dae Noh  Gyung Guk Kim  Seon Jin Kim   《Wear》2009,267(9-10):1415-1419
The effect of boron on the abrasive wear behavior of the austenitic Fe–Cr–C–Si–B hardfacing alloys was investigated with varying boron concentration. It was found that the abrasive wear resistance of the hardfacing alloys increased up to 50% compared to that of boron-free alloys with increasing boron concentration. The mechanism of the abrasive wear resistance changed at 0.6 wt.% boron. Below 0.6 wt.% boron concentration, the abrasive wear resistance was improved almost linearly and strain-induced martensitic transformation was considered as the controlling factor for improving the resistance. Above 0.6 wt.% boron, it was observed that the primary borides started to precipitate. Further increase in boron concentration was not able to enhance the resistance due to the negligible change of primary borides’ size and volume fraction. With these results, it was concluded that two different effects of boron on the wear resistance of the austenitic Fe–Cr–C–Si–B hardfacing alloys existed depending on the boron concentration.  相似文献   

14.
The erosive wear behaviour of AISI H13 tool steel and AISI 4140 steel has been investigated in this work using a sand blast-type rig. Samples of six different hardness levels (from annealed to 595 HV) were produced and subsequently tested using silica sand as the erodent material at impact angles ranging from 10° to 90°, air drag pressures of 0.689 and 1.38 bar (10 and 20 psi respectively), impact speeds ranging from 70 to 107 m s−1 and various particle sizes. Results of erosion versus impact angle at different hardness levels showed three distinctive wear regions: (i) for impact angles of 10° and 20°, the amount of wear was higher at lower hardness values; (ii) for impact angles of 30° and 40° no significant changes were found in the amount of wear despite the increase in hardness; (iii) for impact angles of 60°, 75° and 90° the amount of wear was higher for higher hardness levels in the eroded material. Single curves showed typical ductile behaviour of these alloys, a transition towards brittle behaviour for the hardest specimens was also observed due to the formation of adiabatic shear bands. SEM analysis was conducted to identify the erosion mechanisms for each type of behaviour.  相似文献   

15.
C Allen  C.X LiT Bell  Y Sun 《Wear》2003,254(11):1106-1112
The plain fatigue and fretting fatigue behaviour of a plasma nitrided dual phase stainless steel known as 3CR12 and an AISI 316 austentic stainless steel have been studied in the present work, using a modified Wohler rotating-bending configuration. Test specimens were produced at two nitriding temperatures, namely 400 and 520 °C, representing low temperature and conventional nitriding temperature, respectively. The test results demonstrate that both nitriding processes can enhance the plain fatigue limit of these steels by approximately 10-25%, with the high temperature process being slightly more effective. Under fretting fatigue conditions, the beneficial effect of plasma nitriding is even more significant and the fretting fatigue limit is increased between 50 and 100% for 3CR12 and at least 50-150% for the AISI steel as the nitriding temperature is raised from 400 to 520 °C.  相似文献   

16.
Wear variations of Incoloy MA956 slid against Incoloy 800HT between room temperature and 750 °C, and sliding speeds of 0.314, 0.654 and 0.905 m s−1 were investigated using a ‘reciprocating block-on-cylinder’ (low debris retention) configuration.Three forms of wear depending largely on sliding temperature were observed: ‘severe wear’ with high transfer between room temperature and 270 °C, ‘severe wear’ with low transfer between 390 and 570 °C and ‘glaze formation’ (retarded by increased sliding speed) at 630 °C and above. The differences in wear behaviour are discussed, with wear behaviour mapped and wear surfaces at 750 °C (0.314 and 0.905 m s−1) cross-sectioned and profiled.  相似文献   

17.
The aim of the current study was to investigate erosive and impact/abrasive wear behaviour of TiC–NiMo and Cr3C2–Ni reinforced NiCrBSi hardfacings at temperatures up to 700 °C.Coatings were produced using plasma transferred arc cladding process. It was shown that the high temperature wear behaviour of TiC–NiMo and Cr3C2–Ni NiCrBSi hardfacings is influenced by oxidation. The formation of mechanical mixed layers and oxide films was observed for both investigated coatings. TiC–NiMo and Cr3C2–Ni reinforced hardfacings show high wear resistance at all testing temperatures for both impact/abrasion and erosion conditions.  相似文献   

18.
《Wear》2006,260(9-10):1028-1034
In many machining applications, adhesion of the workpiece to the tool is a major problem. Adhesion may be reduced by changing the microstructure of the tool steel, e.g. by increasing the carbide content. The present work deals with the influence of some microstructural parameters in the adhesive wear of tool steels. The investigations were conducted using six model alloys based on the powder metallurgy high speed steel AISI M4, all of which had the same martensitic matrix composition after heat treatment. The alloys had MC carbide contents which varied between 0 and 25 mol% in 5 mol% increments. Ball-on-disc experiments were carried out in ambient air at room temperature using austenitic stainless steel and aluminum balls as counterfaces. Wear tracks on the disks were characterized using both a scanning electron microscope and an optical profiler. The results show that two main parameters determine the adhesive wear behavior: the carbide content and the distance between carbides.  相似文献   

19.
Monotonic and cyclic deformations were studied for a high strength bainitic roller bearing steel. The temperature of 75 °C corresponded to normal roller bearing conditions. The materials showed hydrostatic influence on yielding, but no or marginal influence of plastic deformation on density change. Therefore, a linear elastic constitutive model with pressure dependent yielding, non-associated flow rule, combined non-linear kinematic and isotropic hardening was necessary to characterize the cyclic behaviour. A stepwise process is detailed for determining the material parameters of the pressure dependent model, where particular attention was placed on the hardening parameters. One set of parameters was sufficient to describe all tested load ranges including compressive ratchetting. Some comparative tests were performed at room temperature, 150 °C and on martensitic specimens at 75 °C. The temperature influence was limited to the isotropic hardening parameters.  相似文献   

20.
Rolf Waesche  Manfred Hartelt 《Wear》2009,267(12):2208-825
The high temperature tribological performance of tetrahedral amorphous carbon coatings has been analyzed at elevated temperatures up to 250 °C in air against three different counterbody materials—steel 100Cr6, α-alumina and silicon nitride. The results show that the counterbody material influences the friction and wear behavior and therefore coating life time strongly. This effect is well known for these coatings at room temperature under dry environmental conditions, equivalent to conditions above 100 °C when water molecules desorb from the surface. However, the sharp difference in tribological performance between silicon nitride on the one hand and alumina and steel on the other hand cannot be understood in this context. Analyzing the friction behavior during the running-in phase, it is evident that only alumina and steel form a stable interface with constant low friction and relatively low wear rates. Silicon nitride forms an unstable interface with fluctuating COF and relatively high wear rates due to its own inherent tendency to tribo-oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号