首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wear variations of Nimonic 80A slid against Incoloy 800HT between room temperature (RT) and 750 °C, and sliding speeds of 0.314 and 0.905 m s−1 were investigated using a ‘reciprocating-block-on-cylinder’, low debris retention configuration. These were considered alongside previous observations at 0.654 m s−1.Different wear types occurring were mapped, including high transfer ‘severe wear’ (RT and 270 °C, also 0.905 m s−1 at ≤570°C), low transfer ‘severe wear’ (0.314 m s−1 at 390 °C to 510 °C oxide abrasion assisted at 510 °C), and ‘mild wear’ (0.314 m s−1 at ≥570 °C; 0.905 m s−1 at ≥630 °C). Wear surfaces at 750 °C were cross-sectioned and profiled.  相似文献   

2.
The development of wear surfaces formed during limited debris retention sliding wear of Incoloy MA956 against Stellite 6 between room temperature and 750 °C, and sliding speeds of 0.314 and 0.905 m s−1 (7 N applied load, 4522 m sliding distance) were investigated. At 0.314 m s−1, mild oxidational wear was observed at all temperatures, due to oxidation of Stellite 6-sourced debris and transfer to the Incoloy MA956; this debris separated the Incoloy MA956 and Stellite 6 wear surfaces. Between room temperature and 450 °C, the debris mainly took the form of loose particles with limited compaction, whilst between 510 °C and 750 °C the debris were compacted and sintered together to form a Co–Cr-based, wear protective ‘glaze’ layer. The behaviour was identical to that previously observed on sliding Nimonic 80A versus Stellite 6 at 0.314 m s−1.At 0.905 m s−1, mild oxidational wear was only observed at room temperature and 270 °C and dominated by Incoloy MA956-sourced debris. At 390 and 450 °C, the absence of oxide debris allowed ‘metal-to-metal’ contact and resulted in intermediate temperature severe wear; losses in the form of ejected metallic debris were almost entirely Incoloy MA956-sourced. This severe wear regime was also observed from 510 up to 630 °C, but increasingly restricted to the early stages of wear by development of a wear protective Incoloy MA956-sourced ‘glaze’ layer. This ‘glaze’ layer formed so rapidly at 690 °C and 750 °C, that severe wear was all but eliminated and wear levels were kept low.The behaviour observed for Incoloy MA956 versus Stellite 6 at 0.905 m s−1 contrasts sharply with that previously observed for Nimonic 80A versus Stellite 6, in that the Incoloy MA956-sourced high Fe–Cr debris formed a protective oxide ‘glaze’, whilst the Nimonic 80A-sourced Ni and Cr oxides formed an abrasive oxide that at high sliding speeds assisted wear. The data indicates that the tendency of oxide to form a ‘glaze’ is readily influenced by the chemistry of the oxides generated.  相似文献   

3.
《Tribology International》2012,45(12):1902-1919
Wear variations of Nimonic 80A slid against Incoloy 800HT between room temperature (RT) and 750 °C, and sliding speeds of 0.314 and 0.905 m s−1 were investigated using a ‘reciprocating-block-on-cylinder’, low debris retention configuration. These were considered alongside previous observations at 0.654 m s−1.Different wear types occurring were mapped, including high transfer ‘severe wear’ (RT and 270 °C, also 0.905 m s−1 at ≤570°C), low transfer ‘severe wear’ (0.314 m s−1 at 390 °C to 510 °C oxide abrasion assisted at 510 °C), and ‘mild wear’ (0.314 m s−1 at ≥570 °C; 0.905 m s−1 at ≥630 °C). Wear surfaces at 750 °C were cross-sectioned and profiled.  相似文献   

4.
《Wear》2006,260(9-10):919-932
The variation in wear behaviour during limited debris retention sliding wear of Nimonic 80A versus Stellite 6 (counterface) between room temperature and 750 °C, at sliding speeds of 0.314, 0.654 and 0.905 m s−1, was investigated. At 0.314 m s−1, mild oxidational wear was observed at all temperatures, due to transfer and oxidation of Stellite 6-sourced debris to the Nimonic 80A and resultant separation of the Nimonic 80A and Stellite 6 wear surfaces. Between room temperature and 450 °C, this debris mostly remained in the form of loose particles (with only limited compaction), whilst between 510 and 750 °C, the particles were compacted and sintered together to form a wear protective ‘glaze’ layer.At 0.654 and 0.905 m s−1, mild oxidational wear due to transfer and oxidation of Stellite 6-sourced debris was only observed at room temperature and 270 °C (also 390 °C at 0.654 m s−1). At 390 °C (450 °C at 0.654 m s−1) and above, this oxide was completely absent and ‘metal-to-metal’ contact resulted in an intermediate temperature severe wear regime—losses in the form of ejected metallic debris were sourced almost completely from the Nimonic 80A. Oxide debris, this time sourced from the Nimonic 80A sample, did not reappear until 570 °C (630 °C at 0.654 m s−1), however, were insufficient to eliminate completely severe wear until 690 and 750 °C. At both 0.654 and 0.905 m s−1, the oxide now preventing severe wear at 690 and 750 °C tended not to form ‘glaze’ layers on the surface of the Nimonic 80A and instead supported continued high wear by abrasion. This abrasive action was attributed to the poor sintering characteristics of the Nimonic 80A-sourced oxide, in combination with the oxides’ increased mobility and decreased residency.The collected data were used to compose a simple wear map detailing the effects of sliding speed and temperature on the wear of Nimonic 80A slid against Stellite 6, at these speeds and temperatures of between room temperature and 750 °C.  相似文献   

5.
The evolution of microstructures in the glaze layer formed during limited debris retention sliding wear of Nimonic 80A against Stellite 6 at 750 °C and a sliding speed of 0.314 m s−1 (7 N applied load, 4522 m sliding distance) was investigated using scanning electron microscopy (SEM), energy dispersive analysis by X-ray (EDX), X-ray diffraction (XRD), scanning tunnelling microscopy (STM) and transmission electron microscopy (TEM). The collected data indicate the development of a wear resistant nano-structured glaze layer. The process of ‘fragmentation’ involving deformation, generation of dislocations, formation of sub-grains and their increasing refinement causing increasing misorientation was responsible for the formation of nano-structured grains. The rapid formation of this glaze layer from primarily cobalt–chromium debris transferred from (and also back to) the surface of the Stellite 6, kept wear of both the Nimonic 80A and Stellite 6 to very low levels.However, increasing the sliding speed to 0.905 m s−1 (750 °C) suppressed glaze formation with only a patchy, unstable glaze forming on the Stellite 6 counterface and an absence of glaze development on the Nimonic 80A sample (the Nimonic 80A surface was covered with at most, a very thinly smeared layer of oxide). The high levels of oxide debris generated at 0.905 m s−1 instead acted as a loose abrasive assisting wear of especially the Nimonic 80A. This behaviour was attributed to a change in oxide chemistry (due to the dominance of nickel and chromium oxides generated from the Nimonic 80A) resulting in poor oxide sintering characteristics, in combination with increased mobility and reduced residency of the oxide debris at 0.905 m s−1.  相似文献   

6.
The wear behaviour of Stellite 6 was studied during rotational sliding in a bespoke bearing rig at 600 °C for times between 2 min and 12 h. Six stages of wear were identified: (i) formation of a mixed oxide ‘glaze’, (ii) cobalt and chromium elemental diffusion to the ‘glaze’ surface forming chromium- and cobalt-dominated oxide layers, (iii) oxygen diffusion into the ‘glaze’ leading to a chromium-dominated oxide layer at the ‘glaze’/substrate interface, (iv) spallation of the ‘glaze’ through chemical failure, (v) re-formation of the ‘glaze’ and (vi) elemental diffusion within the ‘glaze’, again resulting in discrete oxide layer formation.  相似文献   

7.
The microstructures of a wear induced surface glazed layers formed during sliding wear of Nimonic 80A against Stellite 6 at 20–750 °C using a speed of 0.314 m s-1 under a load of 7 N have been investigated using X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) in combination with energy dispersive X-ray (EDX) analysis. The defects formed in the glazed layers were measured by positron lifetime spectroscopy. The results indicate the formation of a wear resistant nanostructured glazed layer. Positron lifetime and Doppler-broadening measurements demonstrated that the defects (mainly dislocations) existed in the glazed layers at low temperatures which increasing wear test temperature led to decrease in defects density. Positron measurements also suggested that, at the annealing temperature (1200 °C), the presence of dislocations might lead to the formation of ordered or partially ordered regions in Nimonic 80A.  相似文献   

8.
High temperature self-lubricating composites Ni3Al-BaF2-CaF2-Ag-Cr were fabricated by powder metallurgy technique. In this paper the effect of Cr content on tribological properties at a wide temperature range starting from room temperature to 1000 °C was investigated. It was found that Ni3Al matrix composite with 20 wt% Cr exhibited low friction coefficient of 0.24-0.37 and a wear rate of 0.52-2.32×10−4 mm3 N−1 m−1. Especially at 800 °C it showed the lowest friction coefficient of 0.24 and a favorable wear rate of 0.71×10−4 mm3 N−1 m−1. This implied that 20 wt% Cr was the optimal Cr content and its excellent tribological performance could be attributed to the balance between strength and lubricity.  相似文献   

9.
In situ Al-TiC (5, 10 and 15 wt%) composites were produced by using a reaction mixture of K2TiF6 and graphite powder with molten metal. The effect of ceramic particulate addition on the high temperature sliding wear resistance of the composites was studied. The sliding wear tests were conducted at room temperature, 120 and 200 °C. The wear rate increases with the increase in applied load and decreases with increase in the weight percentage of TiC. Both monolithic and composites were able to withstand thermal softening effects due to the formation of oxidative protective transfer layer.  相似文献   

10.
Kim  Seock-Sam  Chae  Young-Hun  Kim  Dae-Jung 《Tribology Letters》2001,9(3-4):227-232
A sliding friction-and-wear test for silicon nitride (Si3N4) was conducted using a ball-on-disk specimen configuration. The material used in this study was HIPed silicon nitride. The tests were carried out from room temperature to 1000°C using self-mated silicon nitride couples in laboratory air. The worn surfaces were observed by SEM and the debris particles from the worn surfaces were analyzed for oxidation by XPS. The normal load was found to have a more significant influence on the friction coefficient of the silicon nitride than an elevated temperature. The specific wear rate was found to decrease along with the sliding distance. The specific wear rate at 29.4 N and 1000°C was 292 times larger than that at room temperature. The main wear mechanism from room temperature to 750°C was caused by brittle fracture, whereas from 750 to 1000°C the wear mechanism was mainly influenced by the oxidation of silicon nitride due to the increased temperature. The oxidation of silicon nitride at a high temperature was a significant factor in the wear increase.  相似文献   

11.
High temperature abrasive wear performance of Inconel 617, Stellite 6 alloys and X32CrMoV33 hot work tool steel was investigated. The wear resistance of the latter is degraded at 750 °C due to its inferior oxidation resistance. Extensive oxidation co-occuring with abrasive wear at 750 °C leads to substantial material loss due to the lack of a protective oxide scale, sufficiently ductile to sustain the abrasion without extensive spalling. The wear resistance of the Inconel 617 and Stellite 6 alloys, on the other hand, improves at 750 °C owing to protective oxides that sustain the abrasion without spalling.  相似文献   

12.
A Ni3Al matrix high temperature self-lubricating composite Ni3Al-BaF2-CaF2-Ag-Cr was fabricated by the powder metallurgy technique, and tribological behavior at a wide temperature range from room temperature to 800 °C was investigated. The results indicated that the composite exhibited low friction coefficients (0.30-0.36) and wear rates (0.65-2.45×10−4 mm3 N−1 m−1). It was found that the low friction coefficient was attributed to the synergistic effects of Ag, fluorides and chromates formed in the tribo-chemical reaction at high temperatures. The low wear rate of the composite was due to the high strength and the excellent lubricating properties.  相似文献   

13.
Friction and wear behavior of electroless Ni-based CNT composite coatings   总被引:1,自引:0,他引:1  
Ni-based carbon nanotube (CNT) composite coatings with different volume fraction (from 5 to 12 vol.%) of CNTs were deposited on medium carbon steel substrates by electroless plating. The friction and wear behavior of the composite coatings were investigated using a pin-on-disk wear tester under unlubricated condition. Friction and wear tests were conducted at a sliding speed of 0.0623 m s−1 and at an applied load of 20 N. The experimental results indicated that the friction coefficient of the composite coatings decreased with increasing the volume fraction of CNTs due to self-lubrication and unique topological structure of CNTs. Within the range of volume fraction of CNTs from 0 to 11.2%, the wear rate of the composite coatings showed a steadily decreasing trend with increasing volume fraction of CNTs. Because of the conglomeration of CNTs in the matrix, however, the wear rate of the composite coatings increased with further increasing the volume fraction of CNTs.  相似文献   

14.
Dry friction and wear tests were performed with self-mated couples of SiC containing 50% TiC, Si3N4---BN, SiC---TiB2 and Si3N4 with 32% TiN at room temperature and 400°C or 800°C.Under room temperature conditions, the friction coefficient of the couple SiC---TiC/SiC---TiC is only half of that of the couple SiC/SiC and the wear is one order of magnitude smaller. At 400°C, it exceeds the friction coefficient of SiC/SiC except at the highest sliding velocity of 3 m s−1. At lower sliding velocities the wear coefficient of SiC---TiC/SiC---TiC is lower than that of SiC/SiC.The couple Si3N4---TiN/Si3N4---TiN exhibits high friction coefficients under all test conditions. At room temperature the wear volume of the self-mated couples of Si3N4 and Si3N4---TiN after a sliding distance of 1000 m is similar, but Si3N4---TiN shows a running-in behaviour. At 800°C the wear coefficient of Si3N4---TiN/Si3N4---TiN is approximately two orders of magnitude smaller than that of Si3N4/Si3N4, and equal to those at room temperature. At 22°C the addition of BN reduces the friction of Si3N4. The wear coefficient is independent of sliding velocity and the self-mated couples showing running-in. Friction and wear increase with increasing temperature. The wear coefficient of SiC---TiB2 above 0.5 m s−1 at 400°C is advantageously near 10−6 mm3 (Nm)−1. With the other test conditions the wear behaviour is similar to SSiC.  相似文献   

15.
The tribological behavior of bakelite resin–matrix composites reinforced with nanocrystalline Al 6061 T6 particles produced by machining (grain size 70–500 nm) has been studied using block-on-ring and pin-on-disk tests. The polymer–matrix composite reinforced with nanostructured Al 6061 particles aged for 10 h [Al 6061 (3) 10 h] shows a wear reduction of around 60% with respect to the conventional microstructured reinforcement. Also it shows the lowest wear rates when compared with the nanostructured reinforcements aged for 5 h or 1 h, respectively. Friction coefficients and wear rates increased with increasing sliding speed and normal load. Under 10 N and 0.10 m s−1, Al 6061 (3) 10 h showed an initial friction and contact temperature increase and a very severe wear with material transfer to the steel ball surface. Increasing the steel–composite contact temperature to 100 °C (1 N; 0.05 m s−1) produced a one order of magnitude decrease both in friction and wear. Wear mechanisms for the polymer matrix and the aluminum reinforcement are discussed on the basis of SEM and EDS observations.  相似文献   

16.
Fe-based hardfacing alloys are widely used to protect machinery equipment exposed to different loading situations where abrasives play a dominant role in restricting lifetime of tools. Wear at elevated temperatures is superposed by the effect of oxidation of the wearing surface. In view of the above, two hardfacing alloys based on Fe-Cr-C incorporating Nb, Mo and B to ensure improved performances at elevated temperature were deposited onto mild steel under optimised gas metal arc welding (GMAW) condition. 2-body erosive wear behaviour was evaluated from room temperature up to 650 °C under 30° and 90° impact angle. For 3-body impact/abrasion conditions tests were done with a specially designed cyclic impact abrasion tester (CIAT) at room temperature and 600 °C. The wear behaviour of the hardfacings was compared with austenitic stainless steel. Results indicate that 2-body erosive wear rate of the hardfacing increases with test temperature and with increase in impact angle, whereas wear behaviour of the austenitic stainless steel is non-sensitive to the testing temperature at normal impact. In 3-body impact abrasion testing similar behaviour can be seen; cyclic tests in CIAT at enhanced temperatures result in breaking of coarse carbides, whereas wear mechanisms of the austenitic steel result in massive abrasion and formation of a mechanically mixed layer (MML).  相似文献   

17.
Fluidized-bed combustion is one of the methods to generate energy in a clean and efficient way from a variety of fuels. However, conditions in fluidized-bed boilers: high temperature, oxidizing atmosphere and impacts by fluidized sand particles, can cause significant degradation of some boiler components, such as heat exchangers, by a combination of oxidation attack and erosion wear. Protective coatings, deposited mainly by thermal spraying and diffusion techniques, are considered a solution to extend the lifetime of such components. This paper allows evaluation whether diffusion coatings, applied using a fluidized-bed chemical vapour deposition (FB-CVD) technique, could be used to provide protection for 9Cr-1Mo steel against high-temperature erosion-oxidation.In this paper, the results from laboratory studies of the erosion-oxidation behaviour of uncoated, aluminized and aluminized-siliconized 9Cr-1Mo steel, subjected to air, at temperatures of 550-700 °C and impacts by 200 μm silica sand particles, are presented. The tests were carried out in a fluidized-bed rig, using speeds of 7.0-9.2 m s−1 and angles of 30° and 90°. Erosion-oxidation damage was characterized by measurement of the mean thickness changes using a micrometer and examination of worn surfaces by scanning electron microscopy. The results show that the coatings, particularly the aluminized-siliconized coating, protect the 9Cr-1Mo steel for some period of the test under the given conditions, but, once the coatings are penetrated, aluminizing and aluminizing-siliconizing are no longer effective in preventing erosion-oxidation of the substrate. The interactions between erosion and oxidation processes are discussed and explanations for differences in behaviour of uncoated and coated specimens are presented. Finally, the challenges in developing thicker coatings to provide longer term protection of the steel against erosion-oxidation are considered.  相似文献   

18.
Z.F. Zhou  I. Bello  S.T. Lee 《Wear》2005,258(10):1589-1599
This paper describes the tribological performance of diamond-like carbon (DLC) coatings deposited on AISI 440C steel substrates by electron cyclotron resonance chemical vapor deposition (ECR-CVD) process. A variety of analytic techniques were used to characterize the coatings, such as Raman spectroscopy, atomic force microscopy (AFM) and nano-indentation. The sliding wear and friction experiments were carried out by the conventional ball-on-disk tribometry against 100Cr6 steel counterbody at various normal loads (1-10 N) and sliding speeds (2-15 cm/s). All the wear tests were conducted under dry sliding condition in ambient air for a total rotation cycle of 1 × 105 (sliding distance ∼2.2 km). Surfaces of the coatings and the steel balls were examined before and after the sliding wear tests. The DLC coatings that had been tested all showed relatively low values of friction coefficient, in the range of 0.1-0.2 at a steady-state stage, and low specific wear rates (on the order of 10−8 mm3/Nm). It was found that higher normal loads or sliding speeds reduced the wear rates of the coatings. Plastic deformation became more evident on the coating surface during the sliding wear test at higher contact stresses. The friction-induced transformation of the coating surface into a graphite-like phase was revealed by micro-Raman analysis, and the flash temperature of the contact asperities was estimated. It was suggested that the structural transformation taking place within the wear tracks was mainly due to the formation of compact wear debris layer rather than the frictional heating effect. On the other hand, an adherent transfer layer (tribolayer) was formed on the counterface, which was closely related to the steady-state friction during sliding and the wear mechanisms. Fundamental knowledge combined with the present tribological study led to the conclusion that adhesive wear along with abrasion was probably the dominant wear mechanism for the DLC/steel sliding systems. Additionally, fatigue processes might also be involved in the wear of the coatings.  相似文献   

19.
Two ferritic stainless steels (409Nb and 434L) manufactured through powder metallurgical techniques were wear tested at different temperature conditions (up to 300 °C). Two sliding speeds were used, and tests were carried out against a wrought austenitic stainless steel. Materials’ wear performance was characterized through friction coefficients and analysis of wear tracks was carried out through scanning electron microscopy. Results have shown an adhesive wear mechanism. Oxidized ferrite particles have also been found on wear tracks.  相似文献   

20.
K.Y. Li  Z.F. Zhou  I. Bello  S.T. Lee 《Wear》2005,258(10):1577-1588
Diamond-like carbon (DLC) coatings were prepared on AISI 440C steel substrates at room temperature by electron cyclotron resonance chemical vapor deposition (ECR-CVD) process in C2H2/Ar plasma. Using the designed Ti/TiN/TiCN/TiC interfacial transition layers, relatively thick DLC coatings (1-2 μm) were successfully prepared on the steel substrates. The friction and wear performance of the DLC coatings was evaluated by ball-on-disk tribometry using a steel counterbody at various normal loads (1-10 N) and sliding speeds (2-15 cm/s). By optimizing the deposition parameters such as negative bias voltage, DLC coatings with hardness up to 30 GPa and friction coefficients lower than 0.15 against the 100Cr6 steel ball could be obtained. The friction coefficient was maintained for 100,000 cycles (∼2.2 km) of dry sliding in ambient environments. In addition, the specific wear rates of the coatings were found to be extremely low (∼10−8 mm3/Nm); at the same time, the ball wear rates were one order of magnitude lower. The influences of the processing parameters and the sliding conditions were determined, and the frictional behavior of the coatings was discussed. It has been found that higher normal loads or sliding speeds reduced the wear rates of the coatings. Therefore, it is feasible to prepare hard and highly adherent DLC coatings with low friction coefficient and low wear rate on engineering steel substrates by the ECR-CVD process. The excellent tribological performance of DLC coatings enables their industrial applications as wear-resistant solid lubricants on sliding parts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号