首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
快速化学液相沉积法制备Cf/C复合材料及材料性能   总被引:3,自引:0,他引:3  
采用快速化学液相沉积技术,以液态碳源为前驱体,沉积温度为850~1100℃,系统压力为0.1MPa制备了一种Cf/C复合材料。利用扫描电子显微镜观察了基体热解碳的组织结构;测定了材料的物理、力学、导电、耐磨等性能。研究表明,快速化学液相沉积技术可快速制备出高性能的Cf/C复合材料,其密度达到1.786g/cm3,抗弯强度和抗压强度分别达到118.9MPa、84.6MPa。同时测试了材料的耐磨性和导电性。  相似文献   

2.
SiC–SiC composites with a carbon interphase layer have been annealed in air at high temperature (800–1400°C) in order to determine the oxidation mechanism. Transmission electron microscopy and high-resolution electron microscopy observations have been performed on thin slices of oxidized specimens. Observations show that, with oxidation above 800°C, the carbon interphase can be replaced totally by a thick silica layer, in agreement with previous work. However, in many cases the modified interphase is heterogeneous. The turbostratic carbon structure disappears and the carbon interphase layer is partially replaced by an amorphous silica layer found preferentially at the contact zone between the fibres and the carbon layer. A very thin silica layer can also be observed on the matrix side at the matrix-fibre interfaces. Some decohesion appears in areas where carbon is still present. For short-duration exposures, decohesion occurs between the fibres and the carbon interphase layer.  相似文献   

3.
The friction and wear behaviour of polyetheretherketone (PEEK) composites, incorporating different amounts of short carbon fibres with different surface treatments, was studied under dry sliding conditions against smooth steel on a pin-on-disc apparatus at different temperatures. Wear of the composites was reduced considerably in all cases, but, whatever the surface treatment, wear increased with increasing temperature for all proportions off fibres. For minimum friction coefficient there was an optimum proportion of fibre volume fraction of about 10 vol.%. The effect of the fibre surface treatment was not significant for the tribological behaviour of the PEEK composites. To predict wear performance, a wear model proposed by Friedrich and Voss seemed to work properly, and, furthermore, a friction model was developed to predict the friction behaviour of PEEK composites with short carbon fibres.  相似文献   

4.
这里对碳/碳复合材料车削圆柱表面进行了二维轮廓分析和三维形貌分析的对比研究,分析计算表明三维形貌分析方法更能够真实的反映复合材料的表面质量。  相似文献   

5.
气相沉积制备C/C复合材料微观组织分析   总被引:1,自引:0,他引:1  
详细分析了等温 CVI法制备的 C/ C复合材料中基体碳的组织形貌 ,主要对光滑层、粗糙层及各向同性组织的特征作了详细描述 ,并且分析了各种工艺条件对组织形成的影响 ,首次指出沉积空间的大小影响热解碳的成核和生长并最终导致形成不同的组织。用偏光显微照片中的热解碳组织与断口 SEM形貌作对比 ,证明在层状热解碳的层间存在内应力。  相似文献   

6.
In this study, the authors investigated the tribological performance of diamond and diamondlike carbon (DLC) films as a function of temperature. Both films were deposited on silicon carbide (SiC) by microwave plasma chemical vapor deposition and ion-beam deposition processes. Tribological tests were performed on a reciprocating wear machine in open air (20 to 30% relative humidity) and under a 10 N load using SiC pins. For the test conditions explored, the steady-state friction coefficients of test pairs without a diamond or DLC film were 0.7 to 0.9 and the average wear rates of pins were 10?5 to 10?7 mm3/N·m, depending on ambient temperature. DLC films reduced the steady-slate friction coefficients of the test pairs by factors of three to five and the wear rates of pins by two to three orders of magnitude. Low friction coefficients were also obtained with the diamond films, but wear rates of the counterface pins were high due to the very abrasive nature of these films. The wear of SiC disks coated with either diamond or DLC films was virtually unmeasurable while the wear of uncoated disks was substantial. Test results showed that the DLC films could afford low friction up to about 300° C. At higher temperatures, the DLC films graphitized and were removed from the surface. The diamond films could withstand much higher tempera-lures, but their tribological behavior degraded. Raman spectroscopy and scanning electron microscopy were used to elucidate the friction and wear mechanisms of both films at high temperatures.  相似文献   

7.
沥青基碳/碳复合材料常压浸渍-碳化工艺及组织   总被引:1,自引:0,他引:1  
对常压下液相浸渍 -碳化法制备沥青基 /碳复合材料工艺及致密规律进行了研究 ,并对所得制件的基体组织结构进行分析 ,从理论上解释其产生的原因 ,为制定工艺规范提供根据和指导  相似文献   

8.
Shangguan Qian-qian  Cheng Xian-hua   《Wear》2006,260(11-12):1243-1247
Carbon fibers (CF) were surface treated with air-oxidation, air-oxidation followed by rare earths (RE) treatment and RE treatment, respectively. The friction and wear properties of the polytetrafluoroethylene (PTFE) composites filled with differently surface treated carbon fibers, sliding against GCr15 steel under oil lubrication, were investigated on a reciprocating ball-on-disk UMT-2MT tribometer. The worn surfaces of the PTFE composites were examined using a scanning electron microscopy (SEM). Experimental results revealed that surface treatment of carbon fibers reduced the wear of CF-reinforced PTFE composites. Among all the treatments to carbon fibers, RE treatment was the most effective and lowest friction and wear rate of CF-reinforced PTFE composite was exhibited, owing to the effective improvement of the interfacial adhesion between the carbon fibers and PTFE matrix.  相似文献   

9.
A numerical contact model is used to study the influence of surface roughness and the pressure distribution on the frictional behaviour in rolling/sliding contacts. Double-crowned roller surfaces are measured and used as input for the contact analysis. The contact pressure distribution is calculated for dry static contacts and the results are compared with friction measurements in a lubricated rolling/sliding contact made with a rough friction test rig. The mean pressure is suggested as a parameter that can be used to predict the influence of surface roughness on the friction coefficient in such contacts. The results show two important properties of the friction coefficient for the friction regime studied in this paper: (1) there is a linear decrease in friction coefficient as a function of the slide-to-roll ratio, and (2) the friction coefficient increases linearly with increasing mean contact pressure up to a maximum limit above which the friction coefficient is constant. The absolute deviation of experimental results from the derived theory is for most cases within 0.005.  相似文献   

10.
Feng-hua Su  Zhao-zhu Zhang  Wei-min Liu 《Wear》2008,265(3-4):311-318
Nano-ZnO was successfully grafted with 2,4-toluenediisocyanate (TDI) and β-aminoethyltrimethoxylsilane (OB551) to avoid the agglomeration of nano-ZnO in composite. The hybrid glass/PTFE fabric composites reinforced with the untreated, OB551 and TDI modified nano-ZnO, respectively, were prepared by dip-coating of the hybrid fabric in a phenolic adhesive resin containing the nanoparticles to be incorporated and the successive curing. The friction and wear behaviors of various nano-ZnO reinforced hybrid glass/PTFE fabric composites sliding against AISI-1045 steel in a pin-on-disk configuration were evaluated on a Xuanwu-III high-temperature friction and wear tester, with the unfilled one as a reference. The morphologies of the worn surfaces of the composites and of the counterpart pins were analyzed using scanning electron microscopy. In addition, FTIR spectrum was taken to characterize the untreated and treated nano-ZnO. It is found that the untreated and treated nano-ZnO reinforced hybrid glass/PTFE fabric composites exhibit improved wear resistance and friction-reduction in comparison with the unfilled one. The TDI modified nano-ZnO reinforced composite can obtain the best friction and wear performance under different applied load; followed by the OB551 modified nano-ZnO reinforced one. Sliding conditions, such as environmental temperature and lubricating condition, significantly affect the tribo-performances of the unfilled and filled hybrid glass/PTFE fabric composites.  相似文献   

11.
The present study investigates the potential of surface textures to improve the friction situation of the piston/roller contact in hydraulic motors at low speed and high pressure. A self-adjusting flat on flat rig, with conditions representative of an actual hydraulic motor, is used in a reciprocating sliding motion. The samples are made out of the same materials and the surface finishing operations are the same as used in the motor.The piston surfaces are textured using newly developed embossing tools comprising micromechanically formed all-diamond surfaces. The textured surfaces involve parallel grooves and crossed grooves, each of four different spacings. Also polished surfaces were tested. Un-textured—as tumbled—surfaces are used as reference.Generally, it was found that the friction level was only marginally influenced by the textures. However, the friction fluctuations were reduced. SEM investigations disclosed rather severe modifications of the surfaces during use, primarily caused by plastic deformation of the surface layer. The results and their practical implications are discussed.  相似文献   

12.
以聚乙烯醇缩丁醛为碳源,采用原位热解-热压法制备C/Al-40%Cu(体积分数)复合材料,研究了该复合材料的物相组成、微观结构以及界面反应特性。结果表明:复合材料主要由铝相、铜相、原位生成的碳材料以及少量残留的高分子材料组成,碳材料连续存在于铝、铜相颗粒之间,有效抑制了Al2Cu和Al4Cu9等金属间化合物的生成;复合材料的实测密度接近于理论密度,组织中未见明显孔洞,致密程度较高;复合材料界面结合良好,铝相和铜相、铝相和碳材料层之间均发生了元素互扩散,形成了厚度分别为2.0~3.5μm和1.0~1.5μm的扩散层,铜相和碳材料层之间以机械结合方式连接。  相似文献   

13.
Ni/carbon nanotube (Ni/CNTs) composite coatings were deposited on carbon steel plate by electroless deposition. The friction and wear properties were examined under dry sliding conditions using the ball-on-disk configuration. For reference, carbon steel plate was coated with Ni, Ni/SiC and Ni/graphite. The results show that the Ni/CNT coating has a microhardness value of 865 Hv, greater than for SiC reinforced composite deposits. The Ni/CNTs composite coating possesses not only a higher wear resistance but also a lower friction coefficient, resulting from their improved mechanical characteristics and the unique topological structure of the hollow nanotubes.  相似文献   

14.
采用MM-1000型摩擦磨损试验机对以光滑层、粗糙层为基体炭的2种C/C复合材料在不同刹车压力下的摩擦磨损性能进行了测试。借助微区拉曼光谱和扫描电镜对其摩擦表面的石墨化度与形貌进行了分析。结果表明:以粗糙层为基体炭的C/C复合材料比以光滑层为基体炭的C/C复合材料有更优异的摩擦压力或温度特性。微区拉曼光谱检测证实在摩擦面上粗糙层基体炭相对光滑层基体炭更易变形,所以以粗糙层为基体炭的C/C复合材料的摩擦面在刹车压力达到0.59 MPa时便能形成较厚的摩擦膜,故其摩擦因数能在较高刹车压力下(1.05-1.82 MPa)保持较高的稳定值(0.31),且磨损适当;而光滑层基体炭C/C复合材料需在刹车压力超过0.82 MPa时摩擦面才能形成较薄的摩擦膜,并且由于其导热系数低,高压刹车时摩擦表面氧化严重,所以高压刹车时其摩擦因数衰减大,线性磨损率大,尤其是质量损失急剧升高。  相似文献   

15.
J.H. Ouyang  S. Sasaki  T. Murakami  K. Umeda 《Wear》2005,258(9):1444-1454
Spark-plasma sintering is employed to synthesize self-lubricating ZrO2(Y2O3) matrix composites with different additives of CaF2 and Ag as solid lubricants by tailoring the composition and by adjusting the sintering temperature. The friction and wear behavior of ZrO2(Y2O3) matrix composites have been investigated in dry sliding against an alumina ball from room temperature to 800 °C. The effective self-lubrication at different temperatures depends mainly on the content of various solid lubricants in the composites. The addition of 35 wt.% Ag and 30 wt.% CaF2 in the ZrO2(Y2O3) matrix can promote the formation of a well-covered lubricating film, and effectively reduce the friction and wear over the entire temperature range studied. The friction coefficients at low temperatures were at a minimum value for the composite containing 35 wt.% of silver. At this silver concentration, low and intermediate temperature lubricating properties are greatly improved without affecting high-temperature lubrication by the calcium fluoride in ZrO2(Y2O3) matrix composites. The worn surfaces and transfer films formed during wear process have been characterized to identify the synergistic lubrication behavior of CaF2 and Ag lubricants at different temperatures.  相似文献   

16.
Amorphous (a)-BON/nanocrystal (nc)-TiN bilayer coatings were deposited on a p-type silicon(1 0 0) substrate by low and high RF frequency plasma-assisted metal–organic chemical vapor deposition(PAMOCVD) system, using tetrakisdimethylaminotitanium(TDMAT, [(CH3)2N]4Ti) and trimethylborate(TMB, (CH3O)3B) as TiN and BON precursors, respectively. We used Ar gas as a plasma source and N2 gas as a reactive and additional nitrogen source. In this study, we have mainly investigated the relationship between the hardness and the structure of the coating layers by the effects of deposition parameters such as frequency, deposition time and substrate temperature. The results show that the surface structure of the top layer and the interface structure of layer-by-layer affect the hardness enhancement in bilayered a-BON/nc-TiN thin films. The as-grown films were characterized using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscope (SEM) and nano indenter.  相似文献   

17.
电刷镀镍/碳纳米管复合纳米镀层的结构与磨损性能   总被引:1,自引:0,他引:1  
用含碳纳米管的快速镍电刷镀液制备了镍/碳纳米管复合纳米镀层,研究了热处理温度和镀液中碳纳米管含量对镀层平均晶粒尺寸、结构、力学性能及耐磨性能的影响。结果表明,镀层的晶粒大小随热处理温度的升高是先降低而后增大的;同样碳纳米管的加入对镍刷镀层的平均晶粒尺寸和微结构有显著的影响。镀层的硬度和耐磨性与镀层的平均晶粒尺寸有非常好的对应关系。热处理和碳纳米管的强化作用可导致镀层晶粒细化和结构致密化,从而有效地改善了镀层的力学性能和耐磨性能。  相似文献   

18.
The composites of Ni–Cr–W–Al–Ti–MoS2 with different adding amount of molybdenum disulfide (6–20 wt.%) were prepared by powder metallurgy (P/M) method. Their mechanical properties and tribological properties from room temperature to 600 °C were tested by a pin-on-disk tribometer. The effects of amounts of molybdenum disulfide, temperature, load, and speed on the friction and wear properties of composite were discussed. Besides, the tribological properties against different counterface materials, such as alumina, silicon nitride and nickel-iron-sulfide alloys were also investigated. Results indicated that the molybdenum disulfide was decomposed during the hot-press process and the eutectic sulfides of chromium were formed. The hardness and anti-bending strength can be improved by adding 6 wt.% molybdenum disulfide due to reinforcement of molybdenum. The friction coefficients and wear rates of composites decrease with the increase of adding amount of molybdenum disulfide until a critical value of 12 wt.%. The composite with 12% MoS2 shows the optimum friction and wear properties over the temperature range of RT 600 °C. The friction coefficients of composite with 12% MoS2 decrease with the increase of temperature, load, and sliding speed, while the wear rates increase with the increasing temperature and are insensitive to the sliding speed and load. The friction coefficients of less than 0.20 at 600 °C and mean wear rates of 10−5 mm3/N m are obtained when rubbing against alumina due to the lubrication of sulfide films and glaze layer formed on the friction surface at high temperature, while a relatively low wear rate of around 10−6 mm3/N m presents when rubbing against nickel-iron-sulfide alloys. At high temperature, wear rates of composite containing sulfide are inversely proportional to friction coefficients approximately.  相似文献   

19.
Nano Au-TiO2 composite thin films on Si(1 0 0) and glass substrates were successfully prepared with a facile sol-gel process followed by sintering. The morphology and mircostructure of the films were investigated via X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM). The Au particles, of diameter 14-22 nm depending on the sintering temperatures used, were found to be well dispersed in the TiO2 matrix, with a small amount of the particles escaped from the film. The surfaces of the films were uniform, compact and crack-free. Hardness and elastic modulus of the films were measured by using the nanoindentation technique. Friction and wear properties were investigated by using a one-way reciprocating tribometer. It was found that the highest hardness and elastic modulus values were obtained for the films prepared with 500 °C sintering temperature. The films displayed superior antiwear and friction reduction performances in sliding against an AISI 52100 steel ball. With 5.0 mol% Au, the friction coefficient was only 0.09-0.10 and the wear life was more than 2000 sliding cycles. The friction coefficient and wear life decreased with increasing sliding speed and load. The failure mechanism of the Au-TiO2 films was identified to be light scuffing and abrasion. Those films can be potentially applied as ultra-thin lubricating coatings.  相似文献   

20.
Roll/slide friction tests were carried out at a temperature of 750°C in a vacuum. Disc specimens were made of Si3N4 with or without a sputtered MoS2 film. A pin specimen was rubbed against one disc to supply a lubricating transfer film. With a pin made of an MoS2‐based composite, the friction coefficient was around 0.3 and almost no wear of the discs was observed after 24 h of operation at a load of 50 N, a rotating speed of 0.5 m/s, and a slip ratio of 10%. Transferred patchy MoS2 films were observed on the friction track. With a pin made of Ni‐based composite containing BN and graphite, the friction coefficient increased from 0.2 to 0.7 over a test time of about 8 h and severe disc wear was found. In an additional test using Si3N4 discs with a sputtered MoS2 film without a pin, the friction coefficient was about 0.3, and no wear of the discs was found after 24 h of operation. The appearance of the friction track was similar to that in the test using the MoS2‐based composite pin. It seems that the sputtered MoS2 film wore, but wear particles reattached on the friction path to develop an effective lubricating film. These results demonstrate the effectiveness of transfer film lubrication for long‐term operation in a high‐temperature vacuum, and the superior ability of MoS2 to develop an effective transfer film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号