首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fei Zhou  Yuan Wang  Feng Liu  Yuedong Meng  Zhendong Dai 《Wear》2009,267(9-10):1581-1588
It is evident that the micro-arc oxidation (MAO) ceramic coatings often exhibit relatively high friction coefficients as sliding against many mating materials. To reduce the friction coefficient for the MAO coatings, the duplex MAO/CrN coatings were deposited on 2024Al alloy using combined micro-arc oxidation and reactive radio frequency magnetron sputtering. The microstructure and phase of the duplex coatings were observed and determined using scanning electron microscope (SEM) and X-ray diffraction (XRD), respectively. The friction and wear behaviors of the duplex coatings sliding against Si3N4 balls in air, water and oil were investigated using a ball-on-disk tribometer. The wear rate of the duplex coating was determined by non-contact optical profilometer and the wear tracks on the duplex coatings were observed by SEM. The results showed the CrN coatings mainly consisted of Cr, CrN and Cr2N phases. The duplex coatings/Si3N4 tribopair exhibited the highest friction coefficient in air, while displayed the lowest friction coefficient in oil. When the normal load and the sliding speed increased, the friction coefficient in air increased from 0.65 to 0.72, whereas decreased from 0.58 to 0.36 in water and 0.20 to 0.08 in oil. The specific wear rates for the duplex coatings in air were higher than those in oil. In comparison to the MAO coatings, the duplex MAO/CrN coatings displayed excellent tribological properties under the same conditions.  相似文献   

2.
Ming Chen  Koji Kato  Koshi Adachi 《Wear》2001,250(1-12):246-255
The friction and wear of self-mated SiC and Si3N4 with different initial roughness sliding in water were investigated with pin-on-disk apparatus at normal load of 5 N and sliding speed of 120 mm/s in ambient condition. It was found that, for self-mated Si3N4, the wear mechanism for surface smoothening to obtain low friction was tribochemical wear, but for self-mated SiC, it changed from mechanical wear into tribochemical wear with increasing sliding cycles. After running-in in water, self-mated Si3N4 exhibited lower steady-state friction coefficient than self-mated SiC did. For these two ceramics, initial and steady-state friction coefficients were hardly dependent on initial roughness. Initial roughness mainly affected the running-in period. The larger the initial roughness, the longer the running-in period, but the running-in period was much shorter for self-mated Si3N4 at each initial roughness than that for self-mated SiC.  相似文献   

3.
M. Hadad  G. Blugan  E. Rosset  J. Michler 《Wear》2006,260(6):634-641
Si3N4-TiN based multi-layer laminates exhibit differences in residual stress between individual layers due to a variation of the thermal expansion coefficient between the layers. The residual stress distribution in these multi-layer laminates is known to improve the apparent macroscopic fracture toughness. In this work, the tribological behaviour of bulk, composites and multi-layers laminates are investigated. Si3N4 bulk, Si3N4 based composites with 10, 20 and 30 wt% TiN and different multi-layer laminates have been tested under dry conditions with reciprocal movement using a ball-on-block configuration. In particular, the influence of sliding directions with respect to the layer orientations has been investigated.The experimental results show that wear resistance increased with increasing TiN content in Si3N4-TiN composites. However, multi-layer laminates exhibit an up to three times higher apparent fracture toughness, but do not show an improvement of wear resistance compared to composites.  相似文献   

4.
J. R. Gomes  A. S. Miranda  J. M. Vieira  R. F. Silva   《Wear》2001,250(1-12):293-298
The superior high temperature resistance of silicon nitride (Si3N4) based ceramics makes them suitable for tribological applications above room temperature or in high speed unlubricated sliding. There are some published works on the wear behaviour of Si3N4/metal alloys. However, experimental data are shown in a form that is not of direct use for engineers involved in materials selection. In the present work, Si3N4 pins were tested against tool steel and grey cast iron on a pin-on-disc tribometer. Ceramics were produced by hot-pressing and tested without lubrication at variable temperature and sliding speed. SEM/EDS and XRD analysis were used for chemical and microstructural characterisation of worn surfaces and wear debris. At low speeds (0.05–0.5 m s−1) and room temperature, Si3N4 surfaces are polished-like due to a combination of humidity-assisted tribo-oxidation and abrasive action of very fine wear debris. At high sliding speeds (2–3.5 m s−1), as well as for temperatures in the range 400–600°C, an extensive coherent tribolayer mainly composed by iron oxides spreads over the ceramic surfaces. Polishing and protection by adherent tribolayers are the mechanisms responsible for observed severe and mild wear regimes, respectively. Wear maps are constructed showing the transition of wear regimes in Si3N4/iron alloys contacts determined by constant flash temperature curves. Equations for calculation of bulk and flash contact temperatures in tribocontacts between dissimilar materials are deduced.  相似文献   

5.
6.
Dangsheng  Shirong Ge 《Wear》2001,250(1-12):242-245
Friction and wear behavior of ultra-high molecular weight polyethylene (UHMWPE) sliding against Al2O3 ceramic under dry sliding, and lubrication of fresh plasma, distilled water and physiological saline were investigated with a self-made pin-on-disk apparatus at 37±1°C. The worn surfaces were examined with a scanning electron microscope (SEM). The results show that the friction behavior of UHMWPE is very sensitive to its water absorption state. The wear rate of UHMWPE under dry sliding is the highest and under plasma lubrication is the lowest. The wear mechanisms are different under dry friction and various lubricating conditions.  相似文献   

7.
H Benabdallah 《Wear》2003,254(12):1239-1246
Measurements were made of the dynamic friction coefficients and specific wear rates of several thermoplastics rubbing against relatively soft coatings on steel plates. Polyoxymethylene (POM)-based composites were investigated using reciprocating, line contact tests against two types of corrosion-protected steel plates (electro-deposited cathodic epoxy layers, called “E-coatings”, and galvanised plates). In addition to virgin POM, composites containing glass fibres, polytetrafluoroethylene (PTFE) fibres, PTFE micro-powder, and high-viscosity silicon oil were investigated. Sliding speeds ranged from 0.05 to 0.3 m/s, and normal loads ranged from 5 to 30 N. The E-coating failed at high loads and velocities. The beneficial effects of lubricating additives in tests with uncoated steel counterfaces were also observed with the coated steel surfaces. POM with glass fibre additives was found to be more abrasive than the base material. The considered non-conformal contact produced similar friction and wear trends than those obtained for the conformal contact.  相似文献   

8.
Recent results of tribological properties of carbon nitride (CNx) coatings are reviewed. CNx coatings of 100 nm thickness were formed on Si-wafer and Si3N4 disks by the ion beam mixing method. Friction and wear tests were carried out against Si3N4 balls in the environments of vacuum, Ar, N2, CO2, O2 or air by a ball-on-disk tribo-tester in the load range of 80-750 mN and in the velocity range of 4-400 mm/s.It was found that friction coefficient μ is high (μ=0.2-0.4) in air and O2, and low (μ=0.01-0.1) in N2, CO2 and vacuum. The lowest friction coefficient (μ<0.01) was obtained in N2. It was also found that N2 gas blown to the sliding surfaces in air effectively reduced the friction coefficient down to μ≈0.017. Wear rate of CNx coatings varied in the range 10−9-10−5 mm3/N m depending on the environment.The wear mechanisms of CNx in the nanometer scale were studied by abrasive sliding of an AFM diamond pin in air. It was confirmed that the major wear mechanism of CNx in abrasive friction was low-cycle fatigue which generated thin flaky wear particles of nanometre size.  相似文献   

9.
The effects of volume fraction and size of SiCrFe, CrFeC, and Al2O3 particulates on the abrasive wear rate of compo-casted Al2024 metal matrix composites (MMCs) were studied. The process variables like the stirring speed, position and the diameter of the stirrer have affected the diffusion between particulates and matrix.The abrasive wear rate was decreased by the increase in particulate volume fraction of SiCrFe and CrFeC intermetallic reinforced composites over 80 grade SiC abrasive paper. The wear rates of the all composites decreased with aging treatment, and the best result was seen for the composite having a hybrite structure as SiCrFe and CrFeC particulates together. Nevertheless, the fabrication of composites containing soft particles as copper favors a reduction in the friction coefficient.  相似文献   

10.
In the present work, Si3N4 matrix composites reinforced with different amounts of Al2O3 platelets (0, 30 and 50vol%) were produced with the aim of increasing the tribochemical resistance in the machining of steels. Tool wear was related to the linear increase of the main cutting force (Fc) with time (dFc/dt); a real-time parameter that can be used to assess the cutting edge damage and to stop machining before the tool fails. For all machined steels, tool wear resistance increased with increasing Al2O3 platelet content.  相似文献   

11.
Polyimide-based composites containing fine diamond powder were fabricated using spark plasma sintering. The based material was polyimide (PI) containing a small amount of polytetrafluoroethylene (PTFE). Two types of diamond powder were used: one synthesized by statically high pressure, i.e., high-pressure diamond (HD), and the other synthesized by shock compression, i.e., shock-compression diamond (SD). We evaluated their tribological properties using a reciprocating friction tester in water and air using an Al2O3 mating ball. Adding HD to the polyimide-PTFE-based material decreased the composite's friction in water, but the effect of this addition in air was negligible. The specific wear rate of composites with different HD content was similar to that of the based material alone in water, while the wear of composites decreased with the addition of diamond in air. The effect of diamond powder size on friction and wear of composites was generally low in both water and air. The addition of SD decreased the friction coefficient of composites, but SD content only negligibly affected the friction in water and air. The specific wear rate was minimal at SD content of 5 vol.%, when diamond content was varied. Wear was almost independent of diamond powder size. SD reduced composite friction and wear better than HD; regardless of environment, its friction coefficient was less than 0.1 and the specific wear rate was in the level of 10−7 mm3/N m in both water and air.  相似文献   

12.
《中国机械工程》2000,11(Z1):91-92
采用LOM技术成形了Si3N4/BN层状陶瓷坯体。陶瓷坯体由在其表面涂上BN的Si3N4薄片叠加组成,坯体经排胶和热压烧结后得到最终产物。对坯体进行了热分析;对烧结产物进行了力学性能测试,并与常规成形方法的结果进行了比较。  相似文献   

13.
Friction and wear characteristics of automotive friction materials containing two different phenolic resins (a straight novolac resin and a modified novolac resin) were investigated using a pad-on-disk type friction tester. Six different friction materials with different relative amounts of the phenolic resins and aramid pulp were manufactured and tested. Two different test modes were employed to examine the friction characteristics concerning accumulated thermal history (a constant initial temperature test: test mode I) and friction heat (a constant interval test: test mode II). Friction characteristics such as friction stability and wear resistance were changed significantly according to the type of phenolic resins and to the relative amount of the resin and aramid pulp. Friction materials with the modified novolac resin showed better friction stability than those with the unmodified novolac resin. In particular, the friction materials that were reinforced with 10 vol.% of aramid pulp showed substantial improvement on friction stability regardless of the resin type. However, the friction materials with the modified resin showed significant reduction in wear resistance.  相似文献   

14.
Friction and dry sliding wear behavior of glass and carbon fabric reinforced vinyl ester composites have been presented. The results show that the coefficient of friction and wear rate increased with increase in load/sliding velocity and depends on type of fabric reinforcement and temperature at the interphase. The excellent tribological characteristics were obtained with carbon fiber in vinyl ester. It is believed that a thin film formed on counterface was seems to be effective in improving the tribological characteristics. The worn surfaces examined through SEM, showed higher levels of broken glass fiber in vinyl ester compared to carbon-vinyl ester composites.  相似文献   

15.
为解决工程陶瓷在激光加工中的表面质量问题提出了溶液辅助激光加工方法,首先在综合国内外有关研究的基础上,分析了激光穿越水层的能量传输、激光作用水下固体物质的热传导和静水及水射流辅助激光加工的作用机理;搭建了旁轴射流与超声振动辅助激光复合加工系统,开展了不同加工条件下氮化硅陶瓷刻槽对比试验。借助扫描电子显微镜检测分析激光刻蚀槽体形貌,运用激光共聚焦显微镜观测了槽体截面轮廓。研究表明,水射流辅助激光加工氮化硅陶瓷,因激光穿越水层、水的对流冷却等作用减少了激光烧蚀材料的有效能量,刻蚀深度有所降低;同时由于水层的存在改变了加工区域能量分布,使得槽口变宽。当激光电流200A、频率50Hz、脉宽0.6ms时刻槽深度相对减小30%,宽度增大21%。水与氮化硅在激光作用下的会发生水解等效应,且水蒸汽、材料蒸汽、熔融粒子、气泡等沿水流动方向被带走,有利于表面质量的提高,综合效果良好。  相似文献   

16.
O.O. Adewoye  T.F. Page 《Wear》1981,70(1):37-51
Electron optical microscopy was employed to study the friction and wear of commercial polycrystalline varieties of SiC and Si3N4 in air at ambient temperature. Friction and wear tests were conducted in a reciprocating configuration with conical riders (both diamond and ceramic) sliding on a flat ceramic substrate. Worn surfaces were examined by both scanning electron microscopy and transmission electron microscopy. In general, friction and wear in the diamond-ceramic couples were severe. Friction with ceramic-ceramic couples was low, with friction coefficients between 0.1 and 0.4, wear being absent in single-pass tests.With ceramic-ceramic couple multipass systems, wear of Si3N4 occurs by plastic deformation which increases in severity with sliding distance accompanied by a corresponding increase in friction coefficient. With SiC, wear occurs by a mixture of intergranular fracture due to grain boundary weakness and plastic deformation.  相似文献   

17.
Feng-hua Su  Zhao-zhu Zhang  Wei-min Liu 《Wear》2008,265(3-4):311-318
Nano-ZnO was successfully grafted with 2,4-toluenediisocyanate (TDI) and β-aminoethyltrimethoxylsilane (OB551) to avoid the agglomeration of nano-ZnO in composite. The hybrid glass/PTFE fabric composites reinforced with the untreated, OB551 and TDI modified nano-ZnO, respectively, were prepared by dip-coating of the hybrid fabric in a phenolic adhesive resin containing the nanoparticles to be incorporated and the successive curing. The friction and wear behaviors of various nano-ZnO reinforced hybrid glass/PTFE fabric composites sliding against AISI-1045 steel in a pin-on-disk configuration were evaluated on a Xuanwu-III high-temperature friction and wear tester, with the unfilled one as a reference. The morphologies of the worn surfaces of the composites and of the counterpart pins were analyzed using scanning electron microscopy. In addition, FTIR spectrum was taken to characterize the untreated and treated nano-ZnO. It is found that the untreated and treated nano-ZnO reinforced hybrid glass/PTFE fabric composites exhibit improved wear resistance and friction-reduction in comparison with the unfilled one. The TDI modified nano-ZnO reinforced composite can obtain the best friction and wear performance under different applied load; followed by the OB551 modified nano-ZnO reinforced one. Sliding conditions, such as environmental temperature and lubricating condition, significantly affect the tribo-performances of the unfilled and filled hybrid glass/PTFE fabric composites.  相似文献   

18.
Polyimide cylinders are slid under 50 N normal load and 0.3 m/s sliding velocity against carbon steel (Ra=0.2 and 0.05 μm), high-alloy steel (Ra=0.05 μm), diamond-like carbon (DLC, Ra=0.05 μm) and diamond-like nanocomposite (DLN, Ra=0.05 μm). Only for a limited range of test parameters, the friction of polyimide/DLN is lower than for polyimide/steel, while polyimide shows higher wear rates after sliding against DLN compared to steel counterfaces. The DLN coating shows slight wear scratches, although less severe than on DLC-coatings that are worn through thermal degradation. Therefore, also friction against DLC-coatings is high and unstable. Calculated bulk temperatures for steel and DLN under mild sliding conditions remain below the polyimide transition temperature of 180 °C so that other surface characteristics explain low friction on DLN counterfaces, as surface energy, structural compatibility and transfer behaviour. Friction is initially determined through adhesion and it is demonstrated that higher surface energy provides higher friction. After certain sliding time, different polyimide transfer on each counterface governs the tribological performance. Polyimide and amorphous DLC structures are characterised by C–C bonds, showing high structural compatibility and easy adherence of wear debris on the coating. However, it consists of plate-like transfer particles that act as abrasives and deteriorate the polyimide wear resistance. In sliding experiments with high-alloy steel, wear debris is washed out of the contact zone without formation of a transfer film. Transfer consists of island-like particles for smooth carbon steel and it forms a more homogeneous transfer film on rough carbon steel. The latter thick and protective film is favourable for low wear rates; however, it causes higher friction than smooth counterfaces.  相似文献   

19.
Hot pressed silicon nitride that was exposed to high (90%) and low (32%) relative humidity was examined in ball-on-disc geometry against cemented carbide ball at various normal loads. The study indicated that Si3N4 tested at high R.H. gave less specific wear rate compared with Si3N4 at low R.H. The friction coefficient of Si3N4−WC-6% Co tribopairs was found in the range of 0.32–0.39 and 0.05–0.17 at low humidity and high humidity respectively. It is suggested that adsorbed moisture markedly affected the wear and friction properties of silicon nitride.Following the tests, SEM was used to elucidate the wear mechanism and particularly to delineate the effects of relative humidity on the wear and friction. SEM micrographs showed that the main wear mechanism at low relative humidity (32%) was caused by mechanical wear including abrasive grooves, large holes and polishing, whereas at high relative humidity (90%) the main mechanism was highly influenced by a tribochemical reaction related to the moisture adsorption from the environment. It is concluded that the removal of lubricious tribolayer was occurred by delamination induced crack propagation.  相似文献   

20.
二步法制备Si3N4/MoSi2 合材料的研究   总被引:1,自引:0,他引:1  
用Mo粉、Si粉通过二步法反应制得Si3N4/MoSi2复合材料,并用X射线衍射和扫描电镜、抗析仪等方法对材料进行了显微结构和机械性能的测定。研究表明,复合材料的机械性能,特别是高温机械性能比Si3N4材料有显著的提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号