首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L. Ma  W.M. Rainforth  D. Sun  J.A. Wharton  R.J.K. Wood 《Wear》2009,267(11):2122-2131
The current study focuses on the effect of the material type and the lubricant on the abrasive wear behaviour of two important commercially available ceramic on ceramic prosthetic systems, namely, Biolox® forte and Biolox® delta (CeramTec AG, Germany). A standard microabrasion wear apparatus was used to produce ‘3-body’ abrasive wear scars with three different lubricants: ultrapure water, 25 vol% new-born calf serum solution and 1 wt% carboxymethyl cellulose sodium salt (CMC-Na) solution. 1 μm alumina particles were used as the abrasive. The morphology of the wear scar was examined in detail using Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). Subsurface damage accumulation was investigated by Focused Ion Beam (FIB) cross-sectional milling and Transmission Electron Microscopy (TEM). The effect of the lubricant on the ‘3-body’ abrasive wear mechanisms is discussed and the effect of material properties compared.  相似文献   

2.
采用销-盘式摩擦磨损试验机研究了氧化铝增强氧化锆(ADZ)陶瓷材料/316L不锈钢摩擦副在去离子水和小牛血清2种不同介质润滑下的生物摩擦磨损行为,并利用SEM观察了磨损表面形貌。结果表明:与去离子水相比,在小牛血清润滑条件下ADZ陶瓷的摩擦因数和磨损率降低。在去离子水润滑条件下ADZ陶瓷材料的磨损为轻微磨损,相应的磨损机制为塑性变形和微犁削;而在小牛血清润滑条件下,ADZ陶瓷材料的磨损为微量磨损,磨损过程类似抛光作用。  相似文献   

3.
Dual-motion fretting tests of flat cortical bone specimens from fresh human mandible against pure titanium (TA2) ball were carried out on a modified test rig with tilt angle of 45°. The imposed maximal loads varied from 100 to 200 N. Dynamic characteristics of dual-motion fretting tests were analyzed in combination with micro-examinations via optical microscopy (OM), laser confocal scanning microscopy (LCSM) and scanning electron microscopy (SEM) together with energy dispersive X-ray spectrum (EDX). Two types of F-D curves (the trapezoid and elliptic mode) were recorded during the tests. The examination showed that the wear scars of the dual-motion fretting were asymmetric, and the tangential component of dual-motion fretting was in the mixed fretting regime. Under the lower imposed load, only some detachment of particles and scratches without cracking were observed even after 5×104 cycles. The main wear mechanisms of the dual-motion fretting damage were the abrasive and adhesive wear. Under higher imposed loads, the cracks initiated and propagated mainly at the high stress side of contact edges. The wear mechanisms of the dual-motion fretting of cortical bone under higher imposed loads were the combination of the adhesive wear, abrasive wear, cracking and lubrication of the human bone tissue debris. And the lubrication of the debris played an important role during the dual-motion fretting processes.  相似文献   

4.
This paper presents an investigation of the running in of the most important contact surfaces of a modern diesel cam follower system. The test equipment used consists of a commercially available cylinder head with an overhead camshaft and valve train system for six cylinders. The load on the contacting surfaces is varied by controlling the fuel injector pumps. The running in is investigated by analysing the changes in topography of the roller, pin and rocker arm of the fuel injector arm. Seven test series were conducted for 1, 10 and 100 h with a variation of the load and speed between a high and low level.The test time was not long enough to be able to see any changes in the surface topography of the roller or pin surfaces. However the wear on the roller bearing surface and the rocker arm bearing surface was significant. Here the surface peak heights are worn off and the surfaces are smoothed out. The observed changes in surface topography are related to the current lubrication regime and the wear is discussed in terms of the λ-value.  相似文献   

5.
Wear and corrosion of metal-on-metal hip replacements results in wear debris and metal-ion release in vivo, which may subsequently cause pain and hypersensitivity for patients. Retrieved metal-on-metal hip replacements have revealed that two-body sliding wear and three-body abrasive wear are the predominant wear mechanisms. However, there is a lack of understanding of the combined effects of wear/corrosion, especially the effect of abrasion-corrosion.This study investigates the sliding-corrosion and abrasion-corrosion performance of a cast CoCrMo alloy in simulated hip joint environments using a microabrasion rig integrated with an electrochemical cell. Tests have been conducted in 0.9% NaCl, phosphate buffered saline solution, 25% and 50% bovine serum solutions with 0 or 1 g cm-3 SiC at 37 °C. Experimental results reveal that under abrasion-corrosion test conditions, the presence of proteins increased the total specific wear rate. Conversely, electrochemical noise measurements indicated that the average anodic current levels were appreciably lower for the proteinaceous solutions when compared with the inorganic solutions. A severely deformed nanocrystalline layer was identified immediately below the worn surface for both proteinaceous and inorganic solutions. The layer is formed by a recrystallisation process and/or a strain-induced phase transformation that occurs during microabrasion-corrosion.  相似文献   

6.
Three ceramic composite grades, consisting of a ZrO2 matrix and 40 vol.% WC, TiC0.5N0.5 or TiN phase, were completely self-developed by hot pressing powder mixtures of yttria-stabilised zirconia (Y-TZP) and distinctive WC, TiC0.5N0.5 or TiN powder sources. The friction and wear characteristics of the zirconia-based composites against WC-Co cemented carbide were investigated by performing dry reciprocating sliding experiments on a pin-on-plate tribometer under various normal contact forces. The generated wear was quantified using surface scanning topography. Post-mortem obtained wear volumes were correlated to real-time recorded wear depth. The ZrO2-40 vol.% WC grade displayed more favorable tribological properties compared to the other grades with equal secondary phase content. The worn surfaces and the wear debris were analysed by scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX), revealing several wear mechanisms such as polishing, abrasion and wear debris layer formation, mainly depending on the imposed contact load and the material composition.  相似文献   

7.
Schaupp  D.  Schneider  J.  Zum Gahr  K.-H. 《Tribology Letters》2001,9(3-4):125-131
Commercially available, slightly porous monolithic alumina was modified using CO2-laser irradiation by embedding zirconia, titanium nitride and tungsten carbide. The thickness of the modified surface layers was 550 m after laser treatment and the composition of the multiphase microstructures depended on the laser process and the additives used. Tribological tests were carried out on the ceramics using a laboratory tribometer in unlubricated, oscillating sliding contact at room temperature against alumina balls. The wear mechanisms during running-in were analysed by short-time tests and studies of the worn surfaces by SEM.  相似文献   

8.
Helong Yu  Yi Xu  Peijing Shi  Hongmei Wang  Min Wei  Keke Zhao  Binshi Xu 《Wear》2013,297(1-2):802-810
Surface-modified serpentine powders with an average size of 1.0 μm were dispersed into mineral base oil to improve the lubricating properties of oil, as well as to generate a thin tribofilm on the worn surface. SEM, TEM, nano-indentation and Stribeck testing were performed to study the morphology, microstructure, micromechanical properties and tribological behavior of the tribofilm, respectively. Results show that a nanocrystalline tribofilm, with a thickness of 500–600 nm, is formed on the worn surface under the lubrication of oil with 1.5 wt% serpentine. The film is mainly composed of Fe3O4, FeSi, SiO2, AlFe and Fe-C compound (Fe3C). A phenomenological model of the tribofilm generated by serpentine was developed based on the experimental results. The excellent mechanical properties, reinforced phase of embedded particles and porous structure of the tribofilm contribute to the reduction of friction and wear, especially in the case of boundary and mixed lubrication.  相似文献   

9.
J.H. Ouyang  S. Sasaki  T. Murakami  K. Umeda 《Wear》2005,258(9):1444-1454
Spark-plasma sintering is employed to synthesize self-lubricating ZrO2(Y2O3) matrix composites with different additives of CaF2 and Ag as solid lubricants by tailoring the composition and by adjusting the sintering temperature. The friction and wear behavior of ZrO2(Y2O3) matrix composites have been investigated in dry sliding against an alumina ball from room temperature to 800 °C. The effective self-lubrication at different temperatures depends mainly on the content of various solid lubricants in the composites. The addition of 35 wt.% Ag and 30 wt.% CaF2 in the ZrO2(Y2O3) matrix can promote the formation of a well-covered lubricating film, and effectively reduce the friction and wear over the entire temperature range studied. The friction coefficients at low temperatures were at a minimum value for the composite containing 35 wt.% of silver. At this silver concentration, low and intermediate temperature lubricating properties are greatly improved without affecting high-temperature lubrication by the calcium fluoride in ZrO2(Y2O3) matrix composites. The worn surfaces and transfer films formed during wear process have been characterized to identify the synergistic lubrication behavior of CaF2 and Ag lubricants at different temperatures.  相似文献   

10.
Jianliang Li  Dangsheng Xiong 《Wear》2009,266(1-2):360-367
Nickel-based graphite-containing composites were prepared by powder metallurgy method. Their mechanical properties at room temperature and friction and wear properties from room temperature to 600 °C were investigated by a pin-on-disk tribometer with alumina, silicon nitride and nickel-based alloy as counterfaces. The effects of graphite addition amount, temperature, load, sliding speed and counterface materials on the tribological properties were discussed. The micro-structure and worn surface morphologies were analyzed by scanning electron microscope (SEM) attached with energy dispersive spectroscopy (EDS). The results show that the composites are mainly consisted of nickel-based solid solution, free graphite and carbide formed during hot pressing. The friction and wear properties of composites are all improved by adding 6–12 wt.% graphite while the anti-bending and tensile strength as well as hardness decrease after adding graphite. The friction coefficients from room temperature to 600 °C decrease with the increase of load, sliding speed while the wear rates increase with the increasing temperature, sliding speed. The lower friction coefficients and wear rates are obtained when the composite rubs against nickel-based alloy containing molybdenum disulfide. Friction coefficients of graphite-containing composites from room temperature to 600 °C are about 0.4 while wear rates are in the magnitude of 10?5 mm3/(N m). At high temperature, the graphite is not effective in lubrication due to the oxidation and the shield of ‘glaze’ layer formed by compacting back-transferred wear particles. EDS analysis of worn surface shows that the oxides of nickel and molybdenum play the main role of lubrication instead of graphite at the temperature above 400 °C.  相似文献   

11.
The tribocorrosion behavior of tungsten sliding against an alumina ball was evaluated in sulfuric acid under applied electrode potential. Surface chemistry of worn and unworn surfaces was evaluated using XPS and AES. Quasi-potentiostatic polarization curves and potential step measurements were performed under mass transport control to assess relevant corrosion factors. It was found that the tribocorrosion rate of tungsten varies with the applied electrode potential and goes through a maximum for a potential of 0.5 V MSE. Different material removal mechanisms were identified. In the wear track, materials deterioration proceeds by cyclic mechanical removal of the passive oxide film followed by anodic oxidation. The removal rate was found to be proportional to the passivation charge density determined in independent electrochemical experiments. At higher potential (1 V MSE) a thick WO3 tribolayer forms and by covering the wear track reduces the tribocorrosion damage. Outside the wear track the stirring of the solution induced by the moving alumina ball leads to an enhancement of the dissolution rate of the WO3 passive film and thus to higher material wastage.  相似文献   

12.
The effect of sliding velocity and load on the friction and wear of Cu-steel pairs was studied. Elasto-hydrodynamic (EHL), mixed (ML) and boundary lubrication (BL) regions were analyzed using the Stribeck curve. The lubrication number of Schipper, Z, was used in the analysis of the Stribeck curve. Steady friction states were observed in the mixed EHL and BL regions, however two types of the ML region are revealed. The first type is the stable ML range. The second one is the range of unstable friction and wear when a decrease of the lubricant film leads to abrupt change of all controlled parameters. It was found that a transition to the unstable ML region occurs within a narrow range of Z parameter. Wear modes in the lubrication regions were studied. Deformation hardening in the lubricant regimes is discussed.  相似文献   

13.
The friction and wear of a pure copper block (99.98 wt% Cu) against a hardened steel disc were studied. The effect of sliding velocity and load on the friction coefficient and wear rate of Cu samples during steady tests was studied. Elasto-hydrodynamic (EHL), mixed (ML) and boundary lubrication (BL) regions were analyzed using the Stribeck curve. The lubrication number of Schipper, Z, was used in the analysis of the Stribeck curve. The transitions from one lubrication region to another are discussed. The mixed EHL region is characterized by stable low values of the friction coefficient, wear rate and temperature. Straight asperity contact is the dominant mechanism under friction of Cu–steel pair in the BL region. High-friction coefficients and wear rates, thin lubricant films and large wear grooves indicate straight asperity contact between rubbed surfaces in the BL region. Although the dominant mechanisms in the mixed EHL and BL regions are different in principle, a steady friction state is preserved in both cases. It is expected that the steady friction state in the BL and mixed EHL regions is associated with deformation and fracture of surface layers but these process occur at different scale levels. It was shown that under friction of Cu–steel pair, two types of ML regions are observed. The first is the stable steady friction of mixed EHL with low values of the friction coefficient and wear rate. The second type of the ML region is the region of unstable friction and wear when a decrease of lubricant film leads to a change of external (roughness, temperature, friction and wear) and internal (strain and stress) parameters. It was found out that a transition to the unstable ML region occurs within a narrow range of Z parameter under definite values of the load and sliding velocity.  相似文献   

14.
This paper investigates the feasible machining of zirconium oxide (ZrO2) ceramics, in the hard state, via milling by diamond coated miniature tools (from here on briefly indicated as meso-scale hard milling). The workpiece material is a fully sintered yttria stabilized tetragonal zirconia polycrystalline ceramic (Y-TZP). Diamond coated WC mills, 2 mm in diameter, four flutes and large corner radius (0.5 mm) are chosen as cutting tools, and experiments are conducted on a state-of-the-art micro milling machine centre. The influence of cutting parameters, including axial depth of cut (ap) and feed per tooth (fz), on the achievable surface quality is studied by means of a one-factor variation experimental design. Further tests are also conducted to monitor the process performance, including surface roughness, tool wear and machining accuracy, over the machining time. Mirror quality surfaces, with average surface roughness Ra below 80 nm, are obtained on the machined samples; the SEM observations of the surface topography reveal a prevailing ductile cutting appearance. Tool wear initiates with delamination of the diamond coating and progresses with the wear of the WC substrate, with significant effect on the cutting process and its performance. Main applications of this research include three dimensional surface micro structuring and superior surface finishing.  相似文献   

15.
In the present work, the effect of grain size on the friction and wear behavior of a copper (Cu) samples under different lubricant conditions was studied. The structural evolution of Cu subsurface layers under friction in different lubricant conditions was considered. All friction tests were conducted under laboratory conditions using a block-on-ring rig. The effects of sliding velocity and load on the friction coefficient and wear rate of Cu with different grain size (1, 30, and 60 μm) were analyzed. The Cu samples with the average grain size of 1 μm were obtained due to severe plastic deformation (SPD) by equal channel angular pressing (ECAP). The Stribeck curves for Cu samples with different virgin grain sizes were considered. Elasto-hydrodynamic lubrication (EHL) and boundary lubrication (BL) regions were mainly studied in the present work. Similar Stribeck curves were found out for Cu samples with different virgin grain size. A load of the transition from the EHL to BL region was increased with a decrease of the grain size. While the friction coefficients were similar in the EHL and BL regions for the samples with different grain sizes, the wear rate was increased remarkably with an increase the virgin grain size. Flow localization during friction in the BL region led to formation of the vortex structure in subsurface layers. Based on the dependence of the microhardness upon the depth, the degree of hardening (H) was evaluated. A correlation between the coefficient of wear and the deformation hardening of Cu samples with different virgin grain sizes was revealed. In order to take into account the effect of the grain size and to predict the Stribeck curve, a parameter, K, as the ratio between hardness of tested and annealed samples, was incorporated into the lubricant number. The theoretical values of the Stribeck curve calculated for preliminary deformed Cu samples (d = 1 μm) and annealed samples (d = 60 μm) were well coincided with the experimental results.  相似文献   

16.
Recent results of tribological properties of carbon nitride (CNx) coatings are reviewed. CNx coatings of 100 nm thickness were formed on Si-wafer and Si3N4 disks by the ion beam mixing method. Friction and wear tests were carried out against Si3N4 balls in the environments of vacuum, Ar, N2, CO2, O2 or air by a ball-on-disk tribo-tester in the load range of 80-750 mN and in the velocity range of 4-400 mm/s.It was found that friction coefficient μ is high (μ=0.2-0.4) in air and O2, and low (μ=0.01-0.1) in N2, CO2 and vacuum. The lowest friction coefficient (μ<0.01) was obtained in N2. It was also found that N2 gas blown to the sliding surfaces in air effectively reduced the friction coefficient down to μ≈0.017. Wear rate of CNx coatings varied in the range 10−9-10−5 mm3/N m depending on the environment.The wear mechanisms of CNx in the nanometer scale were studied by abrasive sliding of an AFM diamond pin in air. It was confirmed that the major wear mechanism of CNx in abrasive friction was low-cycle fatigue which generated thin flaky wear particles of nanometre size.  相似文献   

17.
Aluminium bronze, well known for its good sliding properties, is frequently applied as tool material in sheet metal forming (SMF) of stainless steel, e.g. for the production of washing, refrigeration and cooking equipment. The limited hardness of the material makes it, however, sensitive to tool wear that is: volumetric wear of the tool due to sliding contact with the sheet material. Conventional wear tests like the rubber wheel abrasion test or the Taber abrader test cannot be used to simulate the interaction of the tooling with lubricated sheet material. Dedicated tribo tests are therefore conducted with the slider-on-sheet test. The aim of the research is to measure the specific wear rate of aluminium bronze at SMF-like conditions. Experimental results showed a pronounced influence of lubricant selection and sheet material selection. The measured specific wear rate varied from 10−8 mm3/N m for a smooth stainless steel sheet quality to 10−6 mm3/N m for a rough surface quality.  相似文献   

18.
《Wear》2002,252(5-6):518-527
The impregnation of inorganic fullerene-like nanoparticles of WS2 (IF) allows to improve effectively the tribological properties of powdered materials in comparison to the impregnation of oil or commercially available layered WS2 (2H) particles. The main goal of this work was to determine the dominant lubrication regimes under friction of the bronze, iron, and iron–nickel porous matrixes impregnated with 2H and IF solid lubricants. The tribological tests were performed at laboratory atmosphere (humidity ∼50%) using a ring-on-block tester at the sliding speed of V=1 m/s, and the loads of 150–1000 N. The wear of the metal bodies was measured by an eddy current probe system and by weighting of the samples before and after the test. In order to evaluate the radial clearance, the profiles of wear blocks were analyzed by profile projector. Than these data were used in the calculation of the Sommerfeld reciprocal values. Friction and wear results were presented as the Stribeck curves. The critical Sommerfeld reciprocals were evaluated from these curves. The Stribeck curves were compared with the Morgan’s curves for different ranges of non-dimensional permeability, Ψ. These results are used then in calculation of the permeability, Φ. Three lubrication regimes as: quasi-hydrodynamic, boundary or mixed, and dry friction were revealed under friction of porous samples in the load-range studied. It was found that the impregnation of IF nanoparticles provides the regime of quasi-hydrodynamic lubrication in the widest range of loads in comparison to the reference sample and the sample impregnated with 2H–WS2. Fe–Ni samples exhibited the highest wear resistance and provided the widest range of quasi-hydrodynamic lubrication in comparison to bronze and iron powdered composites. The effect of IF on the regimes of lubrication is explained on the base of the third-body model. It is expected that the sliding/rolling of the IF nanoparticles in the boundary of the first bodies and in between the wear particles (third-body) facilitate the shear of the lubrication film and thus provide the quasi-hydrodynamic regime of friction. It is supposed that the roll shape of IF nanoparticles allows to release the IF from the pores to contact surfaces.  相似文献   

19.
You Wang  Yong Yang  Yue Zhao  Wei Tian  Hanmin Bian  Junqi He 《Wear》2009,266(11-12):1051-1057
In situ alumina/aluminum titanate ceramic composites were prepared by spark plasma sintering with two kinds of alumina/titania powders, which are microsized irregular particles (referred to M powder) and microsized spherical particles composed of nanosized grains (referred to N powder). The phase constitution and microstructures of the powders and as-prepared ceramic composites were characterized by using X-ray diffractometer (XRD) and scanning electron microscope (SEM). The sliding wear behaviors of two alumina/aluminum titanate ceramic composites were investigated by ball-on-disc wear test with varied normal loads. The worn surfaces of ceramic composites and counterpart Si3N4 balls were characterized by using SEM equipped with X-ray energy dispersive spectroscopy (EDS). The results showed that the wear volume of two ceramic composites increased with increasing the normal load. Under the same normal load, the wear volume of N composite (obtained from the N powder) was higher than that of M composite (obtained from the M powder). Two different behaviors were identified: N composite showed intergranular fracture and grain pull-out; however, the surface reaction layer formed in M composite presented plastic deformation. The different behaviors are controlled by two different mechanisms, brittle fracture mechanism for N and tribochemical reaction mechanism for M. The different wear behaviors for the two ceramic composites were discussed in detail.  相似文献   

20.
A controllable and variable magnetic field was got by improving the oil cup of a MS-800 four-ball tester. By this improved four-ball tester, the tribological properties of Mn0.78Zn0.22Fe2O4 magnetic fluid in the magnetic field were tested. The worn surfaces of the steel balls lubricated with 6 wt% Mn0.78Zn0.22Fe2O4 magnetic fluid under different magnetic fields were observed by using a scanning electron microscope (SEM), while the elemental compositions of the wear scars were analyzed by means of energy dispersive spectrometry (EDS). It was found that the Mn0.78Zn0.22Fe2O4 nanoparticles had a diameter about 20 nm. Under magnetic field, the 46# turbine oil containing 6 wt% Mn0.78Zn0.22Fe2O4 nanoparticles showed much better friction-reducing and anti-wear abilities compared with lubrication without magnetic field. The worn surface, lubricated by 6 wt% Mn0.78Zn0.22Fe2O4 magnetic fluid lubricated under the effect of magnetic field, is smooth and the plowing is almost disappeared. Moreover, it is found that 22 mT magnetic induction is the optimum magnetic induction. Form theory study we found that under the effect of magnetic field, the bearing capacity increasing with the increasing of magnetic induction. When the eccentricity is small, the side leakage is highly decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号