首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Nackdong River is the longest river in South Korea and passes through major cities that have several industrial complexes, including chemical, electric, and petrochemical complexes, and municipal characteristics such as apartment complexes. Along the river, the Gumi region has an electric industrial complex and an apartment complex that may be possible point sources of xenoestrogens such as phenolic compounds. To identify the causative chemicals for estrogenic activity in the river water of this region, bioassay-directed chemical analysis was performed. All samples from six sampling sites (an upstream point: S1; hot spot points: S2-1, S2-2, and S2-3; and downstream points: S3, and S4) showed estrogenic activity in the E-screen assay, with bio-EEQs (17β-E2-equivalent quantities) ranging from 25.35-677.15 pg/L. Samples from S2-2, the sampling point downstream of the junction of stream water, and domestic and industrial wastewater, contained the highest estrogenic activity. Since the bio-EEQ of the organic acid fraction (F2) of the S2-2 sample had the highest activity (823.25 pg-EEQ/L) and F2 may contain phenolic compounds, GC-MS analyses for phenolic xenoestrogens were conducted with the organic acid fractions of the river water samples. Six estrogenic phenolic chemicals, 4-NP, BPA, 4-t-OP, 4-t-BP, 4-n-OP, and 4-n-HTP, were detected, with the highest concentrations (I-EEQ) found in S2-2 (231.80 pg/L). Among these phenolic chemicals, 4-NP was the most potent estrogen (bio-EEF; 8.12 × 10− 5) and acted as a full agonist. Furthermore, 4-NP was present at levels (2.0 µg/L in S2-2) that can induce VTG induction in fish (>1 µg/L). In addition, we confirmed that river water (S2-2) significantly increased serum VTG levels in crucian carp (Carassius auratus) in a fish exposure experiment under laboratory conditions. Therefore, phenolic xenoestrogens, especially 4-NP, may be the main causative compounds responsible for the estrogenic effect on the Nackdong River.  相似文献   

2.
A scheme of bioassay-directed analysis has been developed which combines a yeast assay screening for estrogenic activity with a liquid chromatographic-mass spectrometric (LC-MS/MS) chemical analysis, chromatographic fractionation, solid phase extraction and freeze-drying. The test scheme was applied on effluent samples collected from a municipal sewage treatment plant. The aim was to determine the substances responsible for main portion of the estrogenic activity in the samples and to compare the efficiency of different procedures for isolation and concentration of estogenicity. LC-MS/MS analyses were used for the quantification of 17beta-estradiol, estrone, estriol and 17alpha-ethinylestradiol, and the measured concentrations compared with the activities found in the yeast assay. Following conversion of the concentrations measured by LC-MS/MS to 17beta-estradiol equivalents it was concluded that freeze-drying, solid phase extraction and the chemical analysis gave comparable activities. Since estrone was the major estrogen in the effluent, this estrogen was also the major contributor to the estrogenic activity in the effluent. The estrogenic activity was equivalent to 4-7 ng/L of 17beta-estradiol. The yeast assay results from the tests of the chromatographic fractions showed that the major activity resides in the fraction where estrone, 17beta-estradiol and 17alpha-ethinylestradiol eluted. The activity of this fraction was substantially higher than the activity of the original wastewater sample. The reason for this could in part be explained by an inhibition of activity occurring in the original water sample.  相似文献   

3.
This work investigated the degradation of a natural (17beta-estradiol) and a synthetic (17alpha-ethinylestradiol) estrogens (pure or in the mixture) and the removal of estrogenic activity by the ozonation and O3/H2O2 process in three different pHs (3, 7 and 11). The effect of oxidation via OH radical was evaluated adding a radical scavenger (t-butanol) in the medium. Estrogenic activity was performed using the YES assay. 17beta-estradiol and 17alpha-ethinylestradiol presented similar estrogenic potential and the association of these estrogens resulted in an addictive effect for estrogenic activity. Ozonation and O3/H2O2 processes were effective in removing the estrogens in aqueous solution. In the mixture at pH 11, removals were higher than 98% and 96% for 17beta-estradiol and 17alpha-ethinylestradiol, respectively. In pH 3, 17beta-estradiol and 17alpha-ethinylestradiol removals were 100% and 99.7%, respectively. When estrogens were treated separately, the removals in pH 11 were superior to 99.7 and 98.8%, while in pH 3 were 100% and 99.5% for 17beta-estradiol and 17alpha-ethinylestradiol, respectively. 17alpha-ethinylestradiol has been always removed at lower rates (pure or in the mixture) for all applied conditions. Estrogenic activity was completely removed in pH 3 for ozonation or O3/H2O2. The samples oxidized in pH 11 presented higher estrogenic activity than those in pH 7. Estrogens removal was lower at pHs 7 and 11, when the scavenger was added to the media. The higher estrogen residual concentrations found in ozonation in presence of tert-butanol are contributing for higher estrogenic activity observed in pHs 7 and 11. By-products with estrogenic activity were formed by oxidation via OH radical. Only a few compounds could be identified in pHs 7 and 11 and they have a phenolic ring, which, probably is contributing to the estrogenic activity observed.  相似文献   

4.
To quantitatively characterize the substances contributing to estrogenic activity in river water, in vitro bioassay using MVLN cells and instrumental analysis using liquid chromatograph–mass spectrometer (LC/MS) or liquid chromatograph–tandem mass spectrometer (LC/MS/MS) were applied to river water extracts taken from various locations in the Tama River, Japan. Tama River water samples were extracted using solid phase extraction and the crude extracts were fractionated by high-performance liquid chromatography (HPLC) into 10 fractions. The sixth fraction contained nonylphenol (NP) and octylphenol (OP) at concentrations in the range of 51.6–147 and 6.9–81.9 ng/L, respectively (concentrations corresponding to the original sample volumes). No estrogenic activity, expressed as 17β-estradiol equivalents (E2-EQB), however, was observed in this fraction (<0.6 ng-E2eq/L). Instrumentally determined estrogenic activity (E2-EQC), which is the concentrations of NP and OP multiplied by their corresponding relative potency, was below the detection limit of the MVLN cell bioassay. Estrogenic activities were detected only in HPLC fraction nos. 7, 8 and 9. Estrone (E1), estradiol (E2) and bisphenol A (BPA) were detected in these fractions. Estriol (E3) and ethynylestradiol (EE2) were not detected (<0.2 ng/L) in these fractions. The calculated E2-EQC for BPA was below the detection limit of bioassay. The E2-EQC for E1 and E2 were on the same order as the estrogenic activity determined by the bioassay (E2-EQB). The ratios of E2-EQC and E2-EQB for E1 and E2 in the three factions collectively (nos. 7–9) were 0.49–0.97 and 0.29–1.12, respectively. Above results indicated that the major causal substances to the estrogenic activity in the Tama River were E1 and E2.  相似文献   

5.
6.
7.
Sediments may be the ultimate sink for persistent (xeno-)estrogenic compounds released into the aquatic environment. Sediment-associated estrogenic potency was measured with an estrogen receptor-mediated luciferase reporter gene (ER-CALUX) assay and compared with a recombinant yeast screen. The ER-CALUX assay was more sensitive to 17beta-estradiol (E2) than the recombinant yeast screen, with an EC50 of 6 pM E2 compared to 100 pM in the yeast screen. Yeast cells were unable to distinguish the anti-estrogens ICI 182,780 and (4-hydroxy)tamoxifen, which were agonistic in the yeast. Acetone-soluble fractions of hexane/acetone extracts of sediments showed higher estrogenic potency than hexane-soluble extracts in the ER-CALUX assay. Sediments obtained from industrialized areas such as the Port of Rotterdam showed the highest estrogenic potency of the 12 marine sediments tested (up to 40 pmol estradiol equivalents per gram sediment). The estrogenic activity of individual chemicals that can be found in sediments including: alkylphenol ethoxylates and carboxylates; phthalates; and pesticides, was tested. Increasing sidechain length of various nonylphenol ethoxylates resulted in decreased estrogenic activity. Of the phthalates tested, butylbenzylphthalate was the most estrogenic, though with a potency approximately 100,000 times less than E2. The organochlorine herbicides atrazine and simazine failed to induce reporter gene activity. As metabolic activation may be required to induce estrogenic activity, a metabolic transformation step was added to the ER-CALUX assay using incubation of compounds with liver microsomes obtained from PCB-treated rats. Results indicate that metabolites of E2, NP and bisphenol A were less active than the parent compounds, while metabolites of methoxychlor were more estrogenic following microsomal incubations.  相似文献   

8.
Brocca D  Arvin E  Mosbaek H 《Water research》2002,36(15):3675-3680
A study of the diffusion of organic additives from four polyethylene (PE) materials into drinking water was conducted. Various structures of organic chemicals were identified in the water extracts by means of gas chromatography-mass spectrometry analysis. Most of them presented a basic common structure characterised by a phenolic ring typically substituted with hindered alkyl groups in positions 2 and 6 on the aromatic ring. The structures attributed to some of the chemicals have been confirmed using commercial or purposely synthesised standards. Unprocessed granules of raw PE were also analysed, in order to investigate the origin of the chemicals detected in the water samples. Consequently, the presence of some of the compounds was attributed to impurities or by-products of typical phenolic additives used as antioxidants in pipeline production. Finally, the occurrence of the identified chemicals was tested under field conditions, i.e. in water samples from newly installed pipelines in a distribution system. Here, the presence of three of the compounds identified in vitro was detected.  相似文献   

9.
Endocrine disrupting chemicals (EDCs) have become a major issue in the field of environmental science due to their ability to interfere with the endocrine system. Recent studies show that surface water is contaminated with EDCs, many released from wastewater treatment plants (WWTP). This pilot study used biological (E-screen assay) and chemical (stir bar sorptive extraction-GC-MS) analyses to quantify estrogenic activity in effluent water samples from a municipal WWTP and in water samples of the recipient river, upstream and downstream of the plant.The E-screen assay was performed on samples after solid phase extraction (SPE) to determine total estrogenic activity; the presence of estrogenic substances can be evaluated by measuring the 17-β-estradiol equivalency quantity (EEQ). Untreated samples were also assayed with an acute toxicity test (Vibrio fischeri) to study the correlation between toxicity and estrogenic disruption activity.Mean EEQs were 4.7 ng/L (± 2.7 ng/L) upstream and 4.4 ng/L (± 3.7 ng/L) downstream of the plant, and 11.1 ng/L (± 11.7 ng/L) in the effluent. In general the WWTP effluent had little impact on estrogenicity nor on the concentration of EDCs in the river water. The samples upstream and downstream of the plant were non-toxic or weakly toxic (0 < TU < 0.9) while the effluent was weakly toxic or toxic (0.4 < TU < 7.6). Toxicity and estrogenic activity were not correlated.At most sites, industrial mimics, such as the alkylphenols and phthalates, were present in higher concentrations than natural hormones. Although the concentrations of the detected xenoestrogens were generally higher than those of the steroids, they accounted for only a small fraction of the EEQ because of their low estrogenic potency. The EEQs resulting from the E-screen assay and those calculated from the results of chemical analyses using estradiol equivalency factors were comparable for all samples and closely correlated.  相似文献   

10.
11.
Endocrine disrupting compounds (EDCs) are pollutants with estrogenic or androgenic activity at very low concentrations and are emerging as a major concern for water quality. Within the past few decades, more and more target chemicals were monitored as the source of estrogenic or androgenic activity in wastewater, and great endeavors have been done on the removal of EDCs in wastewater. This article reviewed removal of EDCs from three aspects, that is, physical means, biodegradation, and chemical advanced oxidation (CAO).  相似文献   

12.
A simplified proliferation test with human estrogen receptor-positive MCF-7 breast cancer cells (E-screen assay) was optimized and validated for the sensitive quantitative determination of total estrogenic activity in effluent samples from municipal sewage plants. After solid phase extraction of 1 l sewage on either 0.2 g polystyrene copolymer (ENV+) or 1 g RP-C18 material and removal of the solvent, analysis of the extracts in the E-screen assay could be performed without any clean-up step. This was even possible with untreated sewage. Parallel extraction of four sewage samples on both different solid phase materials gave comparable quantitative results in the E-screen. A blank sample did not induce cell proliferation. As additive behaviour of the estrogenic response of single compounds was proven for two different mixtures each containing three xenoestrogens, total estrogenic activity in the sewage samples, expressed as 17 beta-estradiol equivalent concentration (EEQ), could be calculated comparing the EC50 values of the samples with those of the positive control 17 beta-estradiol. The detection limit of the E-screen method was 0.05 pmol EEQ/l (0.014 ng EEQ/l), the limit of quantification 0.25-0.5 pmol EEQ/l (0.07-0.14 ng EEQ/l). In total, extracts of nine effluent and one influent sample from five different municipal sewage plants in South Germany were analyzed in the E-screen. All samples strongly induced cell proliferation in a dose-dependent manner which was completely inhibited by coincubation with 5 nM of the estrogen receptor-antagonist ICI 182,780. The proliferative effect relative to the positive control 17 beta-estradiol (RPE) was between 30 and 101%. 17 beta-Estradiol equivalent concentrations were between 2.5 and 25 ng/l indicating a significant input of estrogenic substances via sewage treatment plants into rivers.  相似文献   

13.
雌激素活性作为饮用水水质指标的探讨   总被引:7,自引:0,他引:7  
当前饮用水常规处理工艺对具有雌激素活性内分泌干扰物的去除效果较差,而饮用水水质指标中缺乏对这类物质的限制标准。为此探讨了雌激素活性作为饮用水水质指标的可行性,初步设定饮用水的雌激素活性安全阈值为0.4ngEEQ/L。  相似文献   

14.
Many environmental contaminants are known or suspected to interfere with hormonal function in animals. In vivo test methods to detect and characterize chemicals that disrupt the endocrine system are therefore urgently needed. In this study, we assessed the usefulness of abnormalities of the reproductive organs as test endpoints for estrogenic activity of xenobiotics in Japanese quail embryos. Two synthetic estrogens, diethylstilbestrol (DES) and ethynylestradiol (EE2), were injected into the yolks of embryonated eggs. At a dose as low as 2 ng EE2/g egg, all male embryos became feminized, containing ovary-like tissue in the left testis. The extent of feminization of the testes was determined by measuring the relative area of the ovary-like component. Persistent Müllerian ducts (oviducts) in male embryos, and malformations of the Müllerian ducts in females occurred at 2 ng EE2/g egg and higher doses. DES was approximately one-third to one-tenth as potent as EE2. The morphological changes studied were dose-dependent, indicating that they are useful as test endpoints for estrogenic activity. Feminization of the left testis in males proved to be the most sensitive endpoint. We propose the quail egg as a simple in vivo test system for estrogenic compounds.  相似文献   

15.
Recent studies have reported that chlorination increased the antiestrogenic activity of wastewater, suggesting that disinfection by-products (DBPs) formed during chlorination is a potential and important source of endocrine-disruptor. However, antiestrogenic DBPs have not been identified. In this study, the antiestrogenic activity after aqueous chlorination of phenylalanine solution was evaluated by yeast two-hybrid assay and antiestrogenic DBPs were also identified and characterized. For the first time, aqueous chlorination of phenylalanine was found to form antiestrogenic DBPs when the antiestrogenic activity of chlorinated phenylalanine solution (0.5 mmol L?1) increased from undetectable to 57 μmol-tamoxifen (TAM) L?1 with the increase in chlorine doses from 0 to 0.5 mmol-Cl2 L?1. This level decreased sharply when chlorine addition went over 0.5 mmol-Cl2 L?1. By fractionating DBPs of chlorinated phenylalanine solution into different fractions via semipreparative liquid chromatography, a key fraction with high antiestrogenic activity was discovered and collected. Based on analyses of mass spectrometry (MS) and nuclear magnetic resonance (NMR), the compound involved in this fraction (21 mg) was determined to be 2,4-diphenylcrotonaldehyde, which is newly identified as a relatively high antiestrogenic chemical.  相似文献   

16.
北方某水厂的类雌激素物质变化规律   总被引:12,自引:1,他引:12  
对北方某水厂春季和夏季源水和各处理单元出水中类雌激素物质的变化规律进行了研究。将水样用固相萃取方法富集后,按不同极性洗脱,得到从非极性到极性的3个组分,分别对总提取物和各分级富集组分进行重组雌激素受体基因的酵母检测。结果表明:源水和各处理单元出水中能够检测到极低水平的类雌激素物质,其中源水中的类雌激素效应仅相当于5.4~11.0pg/L雌二醇当量,主要由非极性与弱极性的类雌激素物质引起;春季和夏季源水中的类雌激素效应相差不大;水厂传统的处理工艺对类雌激素物质的去除效果不明显;重组基因酵母检测技术结合水样的固相萃取、三步纯化分级前处理方法可以快速、有效地筛选和定量分析水样中未知类雌激素物质,并对水处理效果进行评价。  相似文献   

17.
H Zhang  Y Zhang  Q Shi  S Ren  J Yu  F Ji  W Luo  M Yang 《Water research》2012,46(16):5197-5204
Dissolved natural organic matter (DOM), particularly the low molecular weight DOM, can affect the performance of water treatment processes and serve as a main precursor of disinfection by-products (DBPs) during chlorination. In this study, electrospray ionization coupled to Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) was used to characterize the low molecular weight DOM along the treatment trait of a conventional drinking water treatment plant. The ESI FT-ICR MS data showed that various C, H, O-only class species were the major components in the source water. According to the van Krevelen diagram analysis, lignin- and tannin-like compounds were the most abundant components. Within an isobaric group, the DOM molecules with a high degree of oxidation (high O/C value) were preferentially removed during coagulation, while those with low degree of oxidation were found to be more reactive toward chlorine. In addition, 357 one-chlorine containing products and 199 two-chlorine containing products formed during chlorination were detected in the chlorination effluent sample at a high confidence level. The chlorinated products can be arranged into series, suggesting that they were originated from C, H, O-only precursor compounds, which were in series related by the replacement of CH4 against oxygen. For the first time, this study explored the behavior of low molecular weight DOM along a drinking water treatment trait on the molecular level, and revealed the presence of abundant unknown chlorinated products, which are probably rich in carboxylic and phenolic groups, in drinking water.  相似文献   

18.
In this study, the total toxic effects of river water samples were assessed using a series of cell culture bioassays which encompassed different mechanisms, based on specific modes of action. River water samples were collected from three tributaries of the Youngsan River in the western portion of Korea. We confirmed that Youngsan River water was polluted with a complex mixture of estrogenic and dioxin-like compounds. The total toxic effects of the downstream water samples were found to be higher than that of the upstream water samples. In the upstream water samples, total estrogenic activity was measured to be between 0.005 and 0.049 ng-EEQ/l (17beta-estradiol-equivalent concentration) and no CYP1A activity was detected. In the downstream water samples, however, total estrogenic activity was measured to be between 0.021 ng-EEQ/l and 1.918 ng-EEQ/l, and total CYP1A activity was between 0.63 and 3.55 microg-MEQ/l (3-methylcholanthrene-equivalent concentration). When assessed according to a concentration-response curve, downstream water sample extracts exerted dual actions on estrogen receptors, depending on the concentration volume of the samples. The concentration volume range proximal to the original water sample exhibited estrogenic activity, whereas antiestrogenic activity was observed at high concentration volumes (more than 5 times concentration) in the extracts. This study involved a combination of in vitro bioassays, designed to encompass different mechanisms. The bioassays used included the estrogen receptor binding affinity test, E-screen assay, aromatase assay, and EROD assay. These tests provided a great deal of useful information regarding the potency and action modes of estrogenicity and antiestrogenicity inherent in the sampled river water. Although further study is necessary to determine the relationship between toxic responses in in vitro bioassay systems and chronic toxicity in aquatic organisms, our approach is expected to be fairly accurate with regard to the detection of endocrine-disrupting effects in an aquatic environment.  相似文献   

19.
The application of bioassays to assess the occurrence of estrogenic compounds in the environment is increasing in both a scientific and statutory context. The availability of appropriate validated methods for sample pre-treatment and analysis is crucial for the successful implementation of bioassays. Here, we present a sample preparation method for the bioassay screening of estrogenic activity in sediment with the in vitro Estrogen Receptor mediated Chemical Activated LUciferase gene eXpression (ER-CALUX) assay. The method makes use of an Accelerated Solvent (ASE) or Soxhlet extraction with a mixture of dichloromethane and acetone (3:1, v/v), followed by clean up of the extract by Gel Permeation Chromatography (GPC). Recoveries of a panel of 17 pollutants differing largely in physical-chemical properties from spiked sediment were determined and appeared to be on average about 86%. Furthermore, the estrogenic potencies of all test compounds were individually assessed by determination of concentration-response relationships in the ER-CALUX assay. Concentration dependent estrogenic potency was found for 14 of the 17 compounds, with potencies of about 10(5) to 10(7) fold lower than the natural estrogenic hormone 17beta-estradiol. Anti-estrogenic potency was assessed by testing combinations of estradiol and individual test compounds, but was found for none of the compounds. The low estrogenic activity of the test compounds in the spiking mixture was well recovered during GPC treatment of the pure mixture, but did not contribute significantly to the background estrogenic activity present in the spiked sediment. Application of the method to field samples showed that estrogenic activity can be found at different types of locations, and demonstrated that levels between locations may vary considerably over relatively short distances.  相似文献   

20.
Investigations of environmental pollution by endocrine-disrupting chemicals are now in progress. Up to now, several in vitro bioassays have been developed for evaluation of the endocrine disruptive activity; however, there is still a lack of comparative studies of their sensitivity.In this work comparison of the estrogen screening assay based on β-galactosidase expression and a bioluminescent estrogen screen revealed differences in the sensitivity and specificity of the two tests. With the β-galactosidase screen a slight estrogen-like activity of Delor 103, a commercial mixture of PCB congeners, and a fungicide triclosan was measured whereas no activity was detected using the bioluminescent assay. A bioluminescent androgen test negated previously suggested androgenic potential of triclosan.Further, this work demonstrates the androgenic activity of Delor 103, with an EC50 value of 2.29 × 10− 2 mg/L. On the other hand, chlorobenzoic acids (CBAs), representing potential PCB degradation metabolites, exhibited no androgenic activity but were slightly estrogenic. Their estrogenicity varied with their chemical structure, with 2,3-CBA, 2,3,6-CBA, 2,4,6-CBA and monochlorinated compounds exhibiting the highest activity. Thus the results indicated possible transitions of the hormonal activity of PCBs during bacterial degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号