首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
臭氧氧化法处理金矿氰化废水的试验研究   总被引:9,自引:0,他引:9  
试验研究臭氧氧化法处理金矿含氰废水的效果 ,考察了臭氧投加量、pH值、催化剂等对除氰效果的影响。研究结果表明 ,臭氧能够有效地去除金矿废水中的氰化物 ,臭氧投加量、pH值、Cu2 对处理效果有一定影响。  相似文献   

2.
以活性炭为载体,采用浸渍法制备Ni/C催化剂,应用于臭氧催化氧化腈纶废水技术中。考察了臭氧效率、催化剂投加量、pH及催化氧化时间对腈纶废水COD去除率的影响。结果表明:在臭氧效率50%、催化剂投加量2 g、pH=10.0、催化臭氧氧化时间40 min的实验条件下,对腈纶废水的COD去除率达到83.1%。  相似文献   

3.
以颗粒活性炭为载体,制备锰基活性炭催化剂,对印染废水的生化处理尾水进行催化臭氧氧化降解试验研究。研究结果表明,锰基活性炭可显著提高臭氧对印染废水的氧化降解能力。在试验水样为100 mL、催化剂投加量为10 g、臭氧投加量为0.9 mg/min以及温度25℃条件下,经过20 min的反应过程,印染废水生化尾水的COD_(Cr)质量浓度由96 mg/L降至32.5 mg/L,去除率达到66.1%。增大催化剂、臭氧投加量对降低印染废水COD_(Cr)浓度起到积极作用。碱性环境下,催化臭氧氧化的降解效果更好。锰基负载过程使活性炭表面的孔隙结构更发达,比表面积有较大的提高。  相似文献   

4.
介绍了催化臭氧氧化的主要类别,分别叙述了均相和非均相臭氧催化氧化技术在降解废水中的应用及作用机理。分析了溶液pH值,臭氧投加量、投加方式、反应器,催化剂,反应温度等因素对臭氧催化氧化体系的影响。针对催化剂在催化臭氧氧化处理废水中存在的问题,对催化剂的制备指出改进的建议。根据不同的工业废水制备专项催化剂,并且与高效反应器结合是未来非均相催化臭氧化技术的发展方向。  相似文献   

5.
介绍了催化臭氧氧化的主要类别,分别叙述了均相和非均相臭氧催化氧化技术在降解废水中的应用及作用机理。分析了溶液pH值,臭氧投加量、投加方式、反应器,催化剂,反应温度等因素对臭氧催化氧化体系的影响。针对催化剂在催化臭氧氧化处理废水中存在的问题,对催化剂的制备指出改进的建议。根据不同的工业废水制备专项催化剂,并且与高效反应器结合是未来非均相催化臭氧化技术的发展方向。  相似文献   

6.
为了获得最佳的臭氧催化氧化工艺参数,采用1 t/h臭氧催化氧化装置利用单因素及正交试验法研究了臭氧通气量、臭氧浓度及催化剂投加量对COD去除效果的影响规律,确定了工艺条件的影响主次顺序及最佳工艺参数。最后在最佳工艺参数下进行连续试验80 h,进一步考察了最佳工艺参数下COD的去除效果。结果表明:3种工艺条件(即臭氧浓度、臭氧通气量、催化剂投加量)对COD去除率均有很大影响。通过单因素试验发现,随着臭氧通气量、臭氧、催化剂投加量增加,在同等条件下COD去除率越大,但相应的处理成本会增加,最终选择臭氧通气量为1.5 m3/h≤臭氧通气量≤2.5 m3/h,臭氧浓度为150 mg/L≤臭氧浓度≤250 mg/L,催化剂投加量选择为20 kg/t≤催化剂投加量≤30 kg/t。通过正交试验发现,3种臭氧氧化条件对COD去除率影响的主次顺序为臭氧浓度通气量催化剂投加量,验证了上述单因素试验结果,得到最佳工艺参数为:臭氧通气量2.0 m3/h,臭氧浓度250 mg/L,催化剂投加量30 kg/t。最后采用1 t/h臭氧氧化装置,在最佳工艺参数下对脱酚蒸氨后废水进行连续臭氧氧化试验80 h,COD去除率稳定在43.5%左右,反应后可生化性(B/C)稳定至0.4以上,减轻了后续生化处理的负荷及难度。证明臭氧氧化工艺实际应用效果良好。  相似文献   

7.
为解决臭氧氧化处理煤化工废水现阶段所存在的臭氧利用率不高,并进一步处理煤化工废水中的难降解有机物.论文采用臭氧催化氧化法对煤化工调节池废水进行深度处理,研究了温度、pH、臭氧投加量、反应时间、催化剂投加量等因素对COD和色度去除效率的影响.通过单因素实验分析,得到其最佳工况条件为臭氧投加量为4g/h,废水pH=9,水温...  相似文献   

8.
臭氧氧化处理氰化废水的实验研究   总被引:1,自引:0,他引:1  
徐元勤  张恒 《辽宁化工》2001,30(9):373-374
采用臭氧氧化法处理金矿含氰废水,对臭氧投加量、pH值,催化剂等对除氰效果的影响进行了实验研究,研究结果表明,臭氧能够有效地去除金矿废水中的氰化物,臭氧投加量、pH值、Cu^2 对处理效果有一定影响。  相似文献   

9.
对MnO2/膨润土催化臭氧化氯苯废水试验效果和影响因素进行了研究,初步研究了反应动力学特征。试验结果表明:催化剂粒径、投加量、臭氧通量等对试验效果有很大影响。臭氧通量在5.0 mg/min,载体粒径为0.150~0.125 mm(100~120目),催化剂投加量为1 g时,氯苯最佳去除率可达96.56%。MnO2/膨润土催化臭氧化氯苯废水反应遵循一级反应动力学;催化臭氧化体系中氯苯的降解表观速率常数0.056min-1,是单独臭氧氧化速率常数的1.6倍。  相似文献   

10.
通过投加几种不用的金属氧化物催化臭氧氧化氨氮废水,比较出CuO催化氧化氨氮有较好的转化效果。分别考察了在不同pH值、催化剂投加量、初始浓度、臭氧投加量、温度的条件下,催化臭氧氧化氨氮废水的效果。在·OH和臭氧的共同作用下,碱性条件利于氨氮转化;CuO的投加量有最优值为10 g/L;初始浓度越高氨氮去除效果越低;臭氧投加量越大,氨氮去除越高;温度从常温提升至80℃,氨氮转化率得到明显的增加。  相似文献   

11.
Neurodegenerative diseases are characterized by increased permeability of the blood–brain barrier (BBB) due to alterations in cellular and structural components of the neurovascular unit, particularly in association with neuroinflammation. A previous screening study of peptide ligands to identify molecular alterations of the BBB in neuroinflammation by phage-display, revealed that phage clone 88 presented specific binding affinity to endothelial cells under inflammatory conditions in vivo and in vitro. Here, we aimed to identify the possible target receptor of the peptide ligand 88 expressed under inflammatory conditions. A cross-link test between phage-peptide-88 with IL-1β-stimulated human hCMEC cells, followed by mass spectrometry analysis, was used to identify the target of peptide-88. We modeled the epitope–receptor molecular interaction between peptide-88 and its target by using docking simulations. Three proteins were selected as potential target candidates and tested in enzyme-linked immunosorbent assays with peptide-88: fibronectin, laminin subunit α5 and laminin subunit β-1. Among them, only laminin subunit β-1 presented measurable interaction with peptide-88. Peptide-88 showed specific interaction with laminin subunit β-1, highlighting its importance as a potential biomarker of the laminin changes that may occur at the BBB endothelial cells under pathological inflammation conditions.  相似文献   

12.
One of the strategies for improved therapeutic effects in cancer therapy is combination chemotherapy. In this study, a flexible nano-MOF (Fe-MIL-88B-NH2) was synthesized in a sonochemical process, then co-loaded with α-tocopheryl succinate (TOS) and curcumin (CCM). The anticancer activity of co-loaded Fe-MIL-88B-NH2 (Fe-MIL-88B-NH2/TOS@CCM) against the HeLa cells was compared with that of the single-loaded counterpart (Fe-MIL-88B-NH2@CCM). MTT analysis indicates improved cytotoxicity of Fe-MIL-88B-NH2/TOS@CCM. The data from the cell apoptosis assay indicated more apoptosis in the case of the co-loaded nano-MOF. This study indicates the positive effect of the presence of TOS on enhancing the anticancer effect of Fe-MIL-88B-NH2@CCM to prepare a more efficient drug delivery nanosystem.  相似文献   

13.
The MYD88 gene has a physiological role in the innate immune system. Somatic mutations in MYD88, including the most common L265P, have been associated with the development of certain types of lymphoma. MYD88L265P is present in more than 90% of patients with Waldenström’s macroglobulinemia (WM) and IgM monoclonal gammopathy of undetermined significance (IgM-MGUS). The absence of MYD88 mutations in WM patients has been associated with a higher risk of transformation into aggressive lymphoma, resistance to certain therapies (BTK inhibitors), and shorter overall survival. The MyD88 signaling pathway has also been used as a target for specific therapies. In this review, we summarize the clinical applications of MYD88 testing in the diagnosis, prognosis, follow-up, and treatment of patients. Although MYD88L265P is not specific to WM, few tumors present a single causative mutation in a recurrent position. The role of the oncogene in the pathogenesis of WM is still unclear, especially considering that the mutation can be found in normal B cells of patients, as recently reported. This may have important implications for early lymphoma detection in healthy elderly individuals and for the treatment response assessment based on a MYD88L265P analysis.  相似文献   

14.
DMSO/water (80/20 volume ratio) solutions of commercial poly(vinyl alcohol)s (a‐PVA99, a‐PVA88) with degrees of saponification of 99.3 and 88 mol % were gel‐spun into methanol (−20 and −70°C). The dry filaments obtained were drawn at 200°C (a‐PVA99) and 150–180°C (a‐PVA88). The maximum draw ratio and Young's modulus were 26 and 34 GPa for a‐PVA99 and 21 and 24 GPa for a‐PVA88 (drawing temperature: 160°C). So, at first, the dry filaments obtained for a‐PVA88 were drawn at 150–180°C until 10 times their original length. Moreover, the predrawn a‐PVA88 filaments were perfectly saponificated under fixing at the both ends and then the filaments were redrawn at 200°C. The maximum draw ratio and Young's modulus for the filaments (a‐PVA88→99) predrawn at 150°C were 28 and 39 GPa, respectively. The a‐PVA88→99 filaments had two melting peaks (228 and 236°C). © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2872–2876, 2000  相似文献   

15.
Chronic liver disease mediated by the activation of hepatic stellate cells (HSCs) leads to liver fibrosis. The signal adaptor MyD88 of Toll-like receptor (TLR) signaling is involved during the progression of liver fibrosis. However, the specific role of MyD88 in myeloid cells in liver fibrosis has not been thoroughly investigated. In this study, we used a carbon tetrachloride (CCl4)-induced mouse fibrosis model in which MyD88 was selectively depleted in myeloid cells. MyD88 deficiency in myeloid cells attenuated liver fibrosis in mice and decreased inflammatory cell infiltration. Furthermore, deficiency of MyD88 in macrophages inhibits the secretion of CXC motif chemokine 2 (CXCL2), which restrains the activation of HSCs characterized by NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome activation. Moreover, targeting CXCL2 by CXCR2 inhibitors attenuated the activation of HSCs and reduced liver fibrosis. Thus, MyD88 may represent a potential candidate target for the prevention and treatment of liver fibrosis.  相似文献   

16.
The inhibition effect of Zenthoxylum alatum plant extract on the corrosion of mild steel in 20, 50 and 88% aqueous orthophosphoric acid has been investigated by weight loss and electrochemical impedance spectroscopy (EIS). Plant extract is able to reduce the corrosion of steel more effectively in 88% phosphoric acid than in 20% phosphoric acid. The effect of temperature on the corrosion behaviour of mild steel in 20, 50 and 88% phosphoric acid with addition of plant extract was studied in the temperature range 50-80 °C. Results on corrosion rate and inhibition efficiency have indicated that this extract is effective up to 70 °C in 88% phosphoric acid medium. Surface analysis (XPS and FT-IR) was also carried out to establish the mechanism of corrosion inhibition of mild steel in phosphoric acid medium.  相似文献   

17.

The 3D metal–organic framework (MOF), MIL-88B, built from the trivalent metal ions and the ditopic 1,4-Benzene dicarboxylic acid linker (H2BDC), distinguishes itself from the other MOFs for its flexibility and high thermal stability. MIL-88B was synthesized by a rapid microwave-assisted solvothermal method at high power (850 W). The iron-based MIL-88B [Fe3.O.Cl.(O2C–C6H4–CO2)3] exposed oxygen and iron content of 29% and 24%, respectively, which offers unique properties as an oxygen-rich catalyst for energetic systems. Upon dispersion in an organic solvent and integration into ammonium perchlorate (AP) (the universal oxidizer for energetic systems), the dispersion of the MOF particles into the AP energetic matrix was uniform (investigated via elemental mapping using an EDX detector). Therefore, MIL-88B(Fe) could probe AP decomposition with the exclusive formation of mono-dispersed Fe2O3 nanocatalyst during the AP decomposition. The evolved nanocatalyst can offer superior combustion characteristics. XRD pattern for the MIL-88B(Fe) framework TGA residuals confirmed the formation of α-Fe2O3 nanocatalyst as a final product. The catalytic efficiency of MIL-88B(Fe) on AP thermal behavior was assessed via DSC and TGA. AP solely demonstrated a decomposition enthalpy of 733 J g?1, while AP/MIL-88B(Fe) showed a 66% higher decomposition enthalpy of 1218 J g?1; the main exothermic decomposition temperature was decreased by 71 °C. Besides, MIL-88B(Fe) resulted in a decrease in AP decomposition activation energy by 23% and 25% using Kissinger and Kissinger–Akahira–Sunose (KAS) models, respectively.

  相似文献   

18.
19.
The formulation and characterization of gentamicin-loaded microspheres as a delivery system targeting enterotoxigenic Escherichia coli K88 (E. coli K88) was investigated. Glycated albumin with lactose (BSA-glucose-β (4-1) galactose) was used as the microsphere matrix (MS-Lac) and gentamicin included as the transported antibiotic. The proposed target strategy was that exposed galactoses of MS-Lac could be specifically recognized by E. coli K88 adhesins, and the delivery of gentamicin would inhibit bacterial growth. Lactosylated microspheres (MS-Lac1, MS-Lac2 and MS-Lac3) were obtained using a water-in-oil emulsion, containing gentamicin, followed by crosslinking with different concentrations of glutaraldehyde. Electron microscopy displayed spherical particles with a mean size of 10–17 µm. In vitro release of gentamicin from MS-Lac was best fitted to a first order model, and the antibacterial activity of encapsulated and free gentamicin was comparable. MS-Lac treatments were recognized by plant galactose-specific lectins from Ricinus communis and Sophora japonica and by E. coli K88 adhesins. Results indicate MS-Lac1, produced with 4.2 mg/mL of crosslinker, as the best treatment and that lactosylated microsphere are promising platforms to obtain an active, targeted system against E. coli K88 infections.  相似文献   

20.
Dynamic fatigue and stress rupture tests in four-point bending were conducted on a commercially available SN88 silicon nitride ceramic at temperatures in the range 700°–1000°C in air. The objective of the present study was to elucidate the failure of SN88 silicon nitride ceramic nozzles arising from a critical crack initiated at the intermediate temperature airfoil region during an engine field test. Results of dynamic fatigue tests indicated that SN88 silicon nitride tested at a stressing rate of 30 MPa/s exhibited little change in characteristic strength at the various test temperatures. However, SN88 silicon nitride exhibited a significant degradation in mechanical strength when tested at 0.003 MPa/s at temperatures indicative of a great susceptibility to slow crack growth, especially at 850°C. SEM and XRD analyses indicated that the mechanical instability of SN88 silicon nitride at intermediate temperatures resulted from the transformation of secondary phase(s) from oxidation. These phase transformations were accompanied by a large volume change, which led to the generation of large local residual tensile stresses. As a result, extensive damage zones were formed, which led to a substantial degradation of mechanical strength and reliability. Microstructural examination of failed SN88 airfoils indicated that a similar damage zone was formed in the regions exposed to intermediate temperatures during engine testing. Consequently, the ultimate failure of these vanes was attributed to the loss in mechanical strength from the damage zone formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号