首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Organic–inorganic lead halide based perovskite solar cells (PSCs) have attracted unprecedented research interest over last decade. The high performance, combined with merits of low fabrication costs and ease of synthesis make PSCs promising alternate to state of the art silicon (Si) based solar cells. However, some inherent shortcomings of PSCs are hindering their market dominance over conventional photovoltaic technologies such as transmission loss of sub-bandgap photons, poor stability and hysteresis effects. Recently, use of rare earth (RE) ions doped nanomaterials in PSCs, has been identified as an effective means to address the aforementioned issues by expanding the range of absorption spectra minimizing the non-absorption loss of solar photons, enhancing light scattering and improving operational stability. This article reviews the recent progress in doping rare-earth (RE) ions in the building blocks of PSCs such as semiconductor electrodes and photoactive perovskite layers, and its use as a separate spectral conversion layer in PSCs. The effect of size, shape, constitution and concentration of RE-nanoparticles on the overall performance and device stability will be analyzed in detail. Moreover, we provide an outlook on the opportunities this newly developed field offers and the critical challenges faced in rationally and effectively using RE-ion-doped nanomaterials in PSCs for better operational stability and enhanced performance.  相似文献   

2.
采用X射线衍射仪、投射电镜仪和扫描电镜仪等测试手段,系统地研究了不同聚乙烯亚胺(PEI)浓度对ZnO纳米线阵列膜的形貌、线密度和尺寸的影响及ZnO纳米线阵列膜的光电性能.研究结果表明,在PEI浓度从3.2 mmol·L-1变化到9.3 mmol·L-1所制备的所有ZnO纳米线阵列膜中,使用7.3 mmol·L-1PEI浓度合成的ZnO纳米线阵列膜,制成染料敏化太阳能电池后获得0.66%的最高的光电转换效率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号