首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
足式机器人的稳定行走*   总被引:3,自引:0,他引:3  
足式机器人在行走过程中,足端与地面之间的法向冲击力将影响机器人的在垂直方向上的稳定性。被动柔顺可以减小垂直冲击力但同时可引发平台持续震荡。针对该问题,设计基于足端力反馈的主动柔顺控制器,分析其对机器人垂直稳定性的影响。机器人由于机械间隙、步态、路面等因素将出现足端打滑现象,导致机器人水平方向失稳。引入摆腿回缩技术,分析摆腿回缩对机器人水平稳定性能的影响。仿真和液压足式机器人行走试验验证提出方法的有效性,提高了机器人行走过程中的垂直和水平方向稳定性。  相似文献   

2.
液压驱动型高性能足式仿生机器人对未知、非结构环境具有很好的适应能力,为尽可能地避免其足地接触过程中的冲击和碰撞,足式机器人的关节应具有一定的动态柔顺性。针对驱动足式机器人关节运动的液压驱动单元(Hydraulic drive unit,HDU)进行研究,首先,建立其液压系统位置/力控制数学模型;其次,推导阻抗控制基本控制原理,并以液压系统作为内环控制方式,分析HDU基于位置/力的阻抗控制机理,研究该两种阻抗控制方法的控制内外环动态柔顺性串并联组成原理;最后,搭建HDU性能测试试验平台,对提出的两种阻抗控制动态柔顺性串并联组成原理进行试验验证。试验结果表明,基于位置的阻抗内环动态柔顺性为并联组成,而阻抗控制外环与位置控制内环动态柔顺性为串联组成;基于力的阻抗内环动态柔顺性为串联组成,而阻抗控制外环与力控制内环动态柔顺性为并联组成;基于力的阻抗控制响应速度大于基于位置的阻抗控制,而后者的阻抗模拟精度要优于前者。以上研究成果可为足式仿生机器人关节控制方法选取及性能优化提供理论和试验参考。  相似文献   

3.
在足式机器人运动过程中,柔顺性控制能有效减少足端触地冲击力,提高环境适应能力。被动弹簧常被用来实现机器人与环境柔性接触,但不能有效吸收剩余冲击能量。主动柔顺能够根据环境不同而调整末端刚度与阻尼,却由于冲击力作用时间很短,对执行器的响应速度有较高的要求。试验发现将主动柔顺控制与被动柔顺相结合,可弥补上述不足,并实现机器人柔顺性触地。在单液压执行器系统中验证了这种方法的有效性,将此控制策略应用在四足机器人单腿系统,得到了同样的效果。通过分析单自由度执行器系统,总结所提柔顺性控制器参数设计原则,进而为四足机器人整体柔顺性设计提供依据。  相似文献   

4.
为提高足式机器人在未知地面环境中运动适应能力,提出了一种基于足地接触特性辨识的模糊自适应阻抗控制算法.首先,针对六足机器人提出一种足地接触特性辨识方法.为降低六足机器人行走时足地之间的冲击力,提出了一种六足机器人沿腿长方向基于足地接触参数的模糊自适应阻抗控制器.基于六足机器人在不平坦地面行走时的足地接触状态,建立机器人步态控制状态机及行走控制框架.通过六足机器人仿真模型,对足地接触特性辨识方法、模糊自适应阻抗控制器以及机器人行走控制框架进行仿真验证,并应用到"青骓"六足机器人样机进行实验验证.  相似文献   

5.
为缓解液压驱动足式机器人动态步态行走时着地瞬间足端冲击对机器人系统及其运动控制的影响,提出了一种基于关节运动规划的机器人柔顺着地控制方法。以液压驱动单腿跳跃机器人为研究对象,分析机器人足端着地冲量,通过选择合适的机器人着地姿态和减小机器人着地前足端速度实现机器人柔顺着地,为此在空中相进行余弦速度曲线关节运动轨迹规划,以及着地相进行余弦函数关节运动轨迹规划。将该方法分别应用于基于MATLAB/Simulink软件建立的仿真模型和试验样机进行单腿竖直跳跃控制实验,仿真和试验结果显示采用该方法的机器人跳跃控制消除了足端着地瞬间地面作用力在膝关节液压缸无杆腔形成的液压冲击,实验结果表明提出的基于关节运动规划的机器人柔顺着地控制方法合理可行。  相似文献   

6.
轮腿式机器人在非结构化路面运动时,机身平稳性控制对于提高运动平稳性、降低系统能耗、提高定位与建图精度等具有重要意义。针对并联式六轮腿机器人在通过不规则地形时足端悬空、姿态倾斜、机身晃动等问题,提出一种融合足端力控制器、姿态控制器及重心高度控制器的机身平稳性控制框架。其中,足端力控制器通过阻抗控制算法抑制机器人足端受力因地形变化带来的突变扰动;机身姿态控制器对机身倾斜角进行解耦,并控制各腿的长度补偿机身的偏移量;重心高度控制器根据各腿的伸长量自适应地调节机身高度,保证腿部执行机构具有足够的运动空间。针对三种控制器相互耦合、对外部扰动抑制效果不佳等问题,利用串级控制的思想将三种控制目标统一为力跟踪控制,降低机身振荡的风险。在并联式六轮腿机器人上进行了实验验证,结果表明所提出的控制算法框架能有效抑制外部地形扰动,当机器人以大约0.6 m/s的速度前进时,机身的俯仰角及横滚角保持在-0.7°~0.7°范围内,足端接触力维持在期望力附近,且机身重心高度随地面起伏自适应地调整,确保了机器人的运动平稳性。  相似文献   

7.
提出了一种新型弹性足式机器人腿部结构设计方法。设计了一种结构简单、响应速度快、抗冲击性强的新型足式机器人腿LCS-Leg(Linkage cable-drive spring leg)。该机器人腿采用弹性连杆机构和线驱动系统,有效降低了腿部惯量和着地冲击力,提高了机器腿的响应速度和减振抗冲能力。使用复数矢量法和D-H方法建立该机器腿运动学模型,基于此模型求解足端运动工作空间,分析了LCS-Leg的越障能力。设计单腿仿真试验平台,对两种不同结构的机器腿进行仿真,对比两者的质心高度、前进速度和足端接触力,验证了所设计机器腿的运动性能。试制弹性足式机器人腿及其试验平台,通过实物样机单腿行走试验,验证了设计方法的有效性,并完成了四足机器人整体结构设计。  相似文献   

8.
为解决四足机器人在砂砾地面上对角行走容易失稳的问题,提高机器人对松软和凹凸不平地面的适应性,在位置控制的基础上提出了一种机身姿态角的调整策略,并在机器人对角行走的过程中采取了一种变阻抗参数的阻抗控制方法。最后在实际的砂砾地面进行了四足机器人对角行走实验,实验结果证明这种控制方法和调整策略对于四足机器人对角行走在砂砾地面上具有较好的控制效果。  相似文献   

9.
为了解决四足机器人运动过程中的着地冲击力问题,设计了 一种基于力的阻抗控制的柔顺控制方法.以四足机器人单腿系统的结构为基础,对其进行运动学分析,进一步求解其速度雅克比矩阵和力雅克比矩阵.将单腿系统简化为"质量-弹簧-阻尼"模型,分析研究单腿系统的跳跃运动特性并规划质心运动轨迹.基于阻抗控制的思想,设计了基于力阻抗控制方...  相似文献   

10.
针对液压四足机器人在坚硬路面行走时,足端位置易受刚性冲击,导致运动姿态平稳性差的问题,提出一种液压四足机器人足端力预测控制方法。在分析液压四足机器人结构的基础上,根据运动学与力学模型构建了液压伺服系统的力控制模型;采用改进自适应布谷鸟优化BP神经网络算法建立足端力预测控制模型,通过仿真对比分析验证了该算法的可行性。最后通过液压四足机器人KL样机进行足端力及刚性地面行走测试,结果表明该方法能有效增强液压四足机器人腿部的力柔顺性,提高运动姿态平稳性。  相似文献   

11.
针对传统液压四足机器人电液伺服阀控缸系统的非线性、参数时变性、控制误差大等问题,提出了一种基于位置闭环控制的模型参考自适应控制算法。以液压四足机器人为研究背景,介绍了单腿整体结构及组成;然后,建立液压四足机器人电液伺服阀控缸控制系统模型、传递函数,并设计模型参考自适应控制器;最后,结合AMESim-MATLAB软件搭建四足机器人电液伺服阀控缸系统的控制模型,并对搭建好的测试平台进行实验。实验表明基于电液位置伺服系统的液压四足机器人阀控缸位置控制系统模型的合理性,阀控缸位置跟踪效果好、响应速度快、误差小、鲁棒性强,验证了所设计的位置闭环控制的模型参考自适应控制算法的可行性。  相似文献   

12.
基于足端轨迹规划算法的液压四足机器人步态控制策略   总被引:17,自引:0,他引:17  
设计一种液压四足机器人仿生机构,通过设定相应的坐标系为机器人进行运动学建模,并对行走过程中单腿的相位关系进行了分析。针对行走过程中足端的拖地、滑动和接触冲击等问题,提出一种零冲击的足端轨迹规划改进算法,并实现了步态规划算法设计。步态规划根据步态中各腿间的相位关系,借助四足机器人运动学模型进行逆运动学解算,求出各腿的关节角度函数,利用机构的几何关系得到各液压缸伸缩量控制函数,对试验样机各腿进行伺服驱动控制,从而实现液压四足机器人的步态规划行走。仿真试验结果表明,在该策略驱动控制下液压四足机器人行走过程连续平稳,样机足端轨迹较为平滑,躯干起伏较小,证明了该足端轨迹规划方法用于四足机器人步态设计的合理性和有效性。  相似文献   

13.
为提升足式机器人在复杂环境下的自适应稳定运动能力,针对具有主被动变刚度柔性关节的四足机器人提出一种对角小跑步态运动控制策略。基于弹簧负载倒立摆模型与控制目标解耦方法,设计了腾空相对角腿关节角规划,着地相前进速度、机身高度、俯仰角调节及腿部刚度主动调节控制策略,并基于足端触地状态完成了四足机器人对角小跑步态运动规划。研制了具有主被动变刚度柔性关节的四足机器人样机,通过实验验证了所提运动控制策略的有效性与正确性。  相似文献   

14.
液压驱动型足式机器人在运动过程中各关节液压驱动单元(Hydraulic drive unit,HDU)多采用基于液压控制内环的外环阻抗控制方法,其中液压控制内环可分为位置闭环控制和力闭环控制。当液压控制内环采用位置闭环控制时,其位置控制性能直接决定了外环阻抗控制性能,所以,一种针对HDU的高精度的位置控制方法具有重要研究意义。针对以上研究意义,首先对HDU位置控制系统6阶数学模型进行简化,求出位置控制系统中各部分传递函数。其次,推导位置控制输入前馈补偿控制器,该控制器中含有液压系统固有非线性和负载特性。最后,在HDU性能测试试验平台上,在多种典型输入信号以及对角小跑输入信号下,对系统的位置控制性能进行试验研究并给出定量分析。试验结果表明,在不同输入信号下,加入所提出的输入前馈补偿控制器可以大幅提高系统位置控制性能,并且该控制器具有良好的多工况适应性。以上研究成果可结合相应的针对位置控制系统的抗干扰控制策略,一起为基于位置的阻抗控制液压内环控制提供控制策略重要参考和试验基础。  相似文献   

15.
液压四足机器人单腿竖直跳跃步态规划   总被引:3,自引:0,他引:3       下载免费PDF全文
针对机器人跳跃运动落地时冲击力大的问题,面向竖直跳跃运动,以液压四足机器人单腿为研究对象,建立液压驱动四足机器人单腿运动学模型,并分别对机器人单腿处于起跳相、落地相和腾空相时进行轨迹规划;根据关节参数,通过运动学逆解求得驱动函数,利用仿真软件ADAMS进行竖直跳跃步态仿真;搭建单腿实验平台,进行实验验证,依据得到的动态特性,分析步态规划的准确性及合理性,为后续液压四足机器人动步态的研究提供设计和控制依据。  相似文献   

16.
针对现有的机器人承载能力不足、复杂环境下适应能力弱以及运行速度慢等特点,创新性地提出了一种基于异形Stewart平台的电动并联式六轮足机器人,该机器人集成了轮式运动与足式运动的优点,可实现轮式、足式以及轮足复合式运动。首先,对机器人的机械结构与控制系统进行设计,然后,为了实现在复杂环境下稳定的行走,足式上设计三足"对角步态"、"两足步态"和"单足步态"的稳定行走算法,实现了机器人稳定且匀速行走;设计了一种在足式步态中调整"支撑项"与"腾空项"占空比的控制算法,克服了足端与地面接触瞬间对机身整体速度带来的影响。轮式运动设计了6轮协同控制,具备6轮独立驱动、独立转向等功能。轮足复合式运动模式下具有变高度、变支撑面、变轮距等功能。通过对电动并联式六轮足机器人多种运动模式进行试验,结果验证了电动并联式六轮足机器人性能的优越性以及控制算法的有效性。  相似文献   

17.
变胞机器人能够根据外界环境变化在轮式行驶和足式行走两种运动模式间自然切换,因此兼具在平整结构路面上快速行驶和在崎岖山地越障行走的能力。基于广义坐标法建立了变胞机器人转向重构过程的运动学模型,考虑到重构过程中摆动腿与环境接触时存在较大冲击,提出了利用阻抗控制方法实现摆动腿着地柔顺控制。在传统阻抗控制的基础上,基于李雅普诺夫渐进稳定性定理设计了自适应阻抗控制器,并利用粒子群优化算法对阻抗控制参数进行了优化。通过在不同环境刚度下仿真分析,证实了经过参数优化后的自适应阻抗控制器能够很好地实现对期望接触力的跟随,提高了变胞机器人对未知多变环境的适应性。最后针对变胞机器人转向重构过程中足着地进行了路面实验,进一步证实了优化后的自适应阻抗控制方法的优越性。  相似文献   

18.
为了提高四足机器人的行走稳定性,在对"马腿"进行仿生分析的基础上,设计了一种四足机器人的新型腿部仿生结构,并基于该机器人的单腿运动学模型,利用复合摆线法对其足端轨迹进行了规划;通过分析足端位移、速度、加速度的变化特点,证明满足该机器人行走稳定性的要求,为后期机器人物理样机的稳定性实验提供了理论依据。  相似文献   

19.
针对液压四足机器人在关节位置控制模式下引起的机器人内力问题,建立液压四足机器人单腿运动学方程和单腿动力学方程,分析机器人内力产生的机理及其对机器人性能的影响,提出基于动力学模型的机器人内力自适应抑制策略。自适应控制器利用关节理论力与实际力间的差值对位置指令进行补偿,以实现消除内力的目的。通过液压四足机器人HD平台进行控制策略验证,实验结果表明,机器人在位置控制模式下,机器人内力抑制策略可有效降低系统内力,使得机器人实际驱动力与理论驱动力接近,验证了控制策略的有效性。  相似文献   

20.
针对液压四足机器人作动器伺服精度较差问题,分别推导电液伺服作动器在摆动相、刚性支撑相和弹性支撑相的等效模型,分析各作动器模型特点,提出比例内环自适应幅相控制外环的复合控制策略,应用比例控制器保证位置内环的稳定性,采用自适应幅相控制器进行幅值和相位补偿。通过机器人单腿测试平台进行控制策略验证,实验结果表明:所提控制策略可使系统幅值衰减小于2%,相位滞后小于4°,验证了此方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号