首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solvent extraction is the most important method for rare earth extraction and separation.Currently,di(2-ethylhexyl)phosphoric acid(HDEHP)and 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester(HEH/EHP)are widely used in industrial production,but there are still obvious deficiencies that require further research to resolve.In this paper,the unsaponification extraction of light rare earth ions in a hydrochloric acid medium by di(2-ethylhexyl)phosphoric acid-di(1-methyl-heptyl)methyl phosphonate(HDEHPP350)system was studied.The results show that the addition of P350 reduces the extraction capacity of HDEHP,and also greatly reduces the concentration of acidity required for the back-extraction.It still has a good separation factor for light rare earths without saponification,and the extractant is not easy to emulsify.With an aqueous phase of pH=2.85,and HDEHP mole fraction XHDEHP=0.9(compared with O/A=2),the separation effect of light rare earth is the best,resulting in the separation coefficientβCe/La=3.39,βPr/Ce=1.67 andβNd/Pr=1.45,respectively.The loaded light rare earth ions extracted by HDEHP-P350 can be easily stripped when 2 mol/L HCl is used as the stripping agent.Finally,the extraction mechanism is discussed using a slope method,and the final structure of the extracted complex is determined to be RECl[(DEHP)2]2P350(o),based on a combination of infrared spectra and 1 H NMR and 31P NMR analyses.  相似文献   

2.
Solvent extraction is the most important method for rare earth extraction and separation.Currently,di(2-ethylhexyl)phosphoric acid(HDEHP)and 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester(HEH/EHP)are widely used in industrial production,but there are still obvious deficiencies that require further research to resolve.In this paper,the unsaponification extraction of light rare earth ions in a hydrochloric acid medium by di(2-ethylhexyl)phosphoric acid-di(1-methyl-heptyl)methyl phosphonate(HDEHPP350)system was studied.The results show that the addition of P350 reduces the extraction capacity of HDEHP,and also greatly reduces the concentration of acidity required for the back-extraction.It still has a good separation factor for light rare earths without saponification,and the extractant is not easy to emulsify.With an aqueous phase of pH=2.85,and HDEHP mole fraction XHDEHP=0.9(compared with O/A=2),the separation effect of light rare earth is the best,resulting in the separation coefficientβCe/La=3.39,βPr/Ce=1.67 andβNd/Pr=1.45,respectively.The loaded light rare earth ions extracted by HDEHP-P350 can be easily stripped when 2 mol/L HCl is used as the stripping agent.Finally,the extraction mechanism is discussed using a slope method,and the final structure of the extracted complex is determined to be RECl[(DEHP)2]2P350(o),based on a combination of infrared spectra and 1 H NMR and 31P NMR analyses.  相似文献   

3.
The conventional rare earth solvent extraction equipments have many problems such as long mixing time, low processing capacity, large factory area occupation, high energy consumption and so on. In order to solve the problems, many types of equipments were brought out. In this work, studies were carried out on the La(III) extraction process with 2-ethylhexyl phosphoric acid-2-ethylhexyl ester (EHEHPA) by membrane dispersion micro-extractor. Equilibrium studies showed that the initial aqueous pH value 4.15 with the saponification rate 40%was the optimal operation condition. The effects of membrane dispersion micro-extractor operational conditions such as dispersion mode, bulk flow rate and organic phase flow rate on the extraction efficiency were studied. The results showed that when the organic solution was the dispersed phase, the extraction efficiency was higher than that of others. Increasing bulk flow ratio could enhance the extraction efficiency greatly. When the ratio of organic phase flow rate to that of aque-ous phase was 80:80, the extraction efficiency was over 95%. The effect of stripping phase acidity on the La(III) recovery was studied. The results showed that when the stripping phase pH was 2.0, organic phase flow rate to stripping phase flow rate was 20:80;the re-covery efficiency of La(III) can reach 82%.  相似文献   

4.
The extraction of the trivalent middle rare earths from chloride media by kerosene solutions of 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester as an extractant was studied. The separation factors between the elements using solution simulating wastes from NiMH spent batteries have been evaluated: the order of the extractive ability of extractant can be confirmed in ThGdEuSm.  相似文献   

5.
The extraction of cerium (Ⅳ) from sulphuric acid medium with Di(2-ethylhexyl) phosphoric acid (DEHPA) was studied. The influence of sulphate ion, acidity, extractant concentration as well as the presence of fluoride ion on the extraction of Ce(Ⅳ) was investigated, and the extraction mechanism was also discussed. The results show that sulphate ion can inhibit the extraction of Ce(Ⅳ) significantly due to its complexation with Ce(Ⅳ). Fluoride ion can enhance Ce(Ⅳ) extraction dramatically by the formation of CeF2^2 and less amount of CeF^3 which can almost be extracted completely. Nevertheless, in the case as F/Ce(mole ratio) in the initial aqueous phase is approximately more than 1.5, the precipitate will be formed and the extraction can not be progressed smoothly.  相似文献   

6.
Studies were carried out on the extraction characters of trivalent rare earths from chloride solutions using organophosphorus acids 2-ethylhexylphosphonic acid mono-(2-ethylhexyl) ester (HEHEHP) combined with [di-(2-ethylhexyl)-phosphoric acid (HDEHP),isopropylphosphonic acid 1-hexyl-4-ethyloctyl ester (HHEOIPP),bis(2,4,4-trimethylpentyl)-phosphinic acid (Cyanex 272),bis(2,4,4-trimethypentyl)-monothiophosphinic acid (Cyanex 302) or bis(2,4,4-trimethypentyl)-dithiophosphinic acid (Cyanex 301)] as extractants. The effect of the equilibrium aqueous acidity on the extraction was studied. According to the corresponding separation factors for adjacent pairs of rare earths,it could be concluded that HEHEHP and Cyanex 272 could be employed for the separation of Tm(Ⅲ),Yb(Ⅲ),Lu(Ⅲ) from the other rare earths. Taking Yb(Ⅲ) as an example,based on the different stripping acid,the potential of the stripping was estimated.  相似文献   

7.
Acco rding to the tetrad-effect,14 elements of lanthanides can be divided into four groups.In our previous study,a new approach was proposed for the kinetic separation of four rare earth ions La(Ⅲ),Gd(Ⅲ),Ho(Ⅲ) and Lu(Ⅲ) coming from four groups.In that study,four rare-earth ions were kinetically separated from their coexisting mixed aqueous solutions,by performing liquid-column elution using the aqueous solution containing four lanthanide rare-earth ions as the stationary phase and the dispersed organic oil droplets containing HEHEHP(2-ethyl hexyl phosphonic acid mono 2-ethyl hexyl ester) extractant as the mobile phase.The study of extraction kinetics is very important for understanding the kinetic separation of rare earth ions,which was carried out in this paper.The extraction kinetics of La(Ⅲ),Gd(Ⅲ),Ho(Ⅲ) and Lu(Ⅲ) by HEHEHP diluted in heptane were investigated using single drop method.The different parameters affecting the extraction rate such as column length,specific interfacial area,rare earth ion concentration,extractant concentration,hydrogen ion concentration and temperature were separately studied and the rate equations are deduced.It is first order with respect to rare earth ion and HEHEHP concentrations,and negative first order with respect to hydrogen ion concentrations.The rate constants at 293.15 K are 10~(-6.23),10~(-5.73),10~(-5.58) and 10~(-5.43),respectively.The experimental results demonstrate that the extraction rate of La(Ⅲ), Gd(Ⅲ),Ho(Ⅲ) or Lu(Ⅲ) is diffusion-controlled,and the extraction reaction takes place at the interface rather than in the bulk phase.The extraction model was proposed.Besides,the kinetic separation of rare earth ions by HEHEHP oil drops was discussed.  相似文献   

8.
P507 solvent extraction is the main method to separate and purify the rare earth products.The emulsification may be caused by the impurities in process of extracting rare earths,and these result in huge economic loss and decrease the quality of rare earth products.In recent researches,the extractant was prone to emulsification,and aluminum content of rare earth products also increased,while aluminum concentration of feed was higher.Pointing to this problem,the structural change of saponification P507 extracting aluminum and lanthanum was investigated by infrared spectroscopy,and the results showed that Al ions exchanged with H of P-O-H to become P-O-Al.Because aluminum held the characteristic of hydrophilic after extracted in the form of hydroxyl polymer ions and this provided conditions for the formation of micro emulsion.The organic phase and aqueous phase were investigated by polarizing microscope after aluminum was extracted.The results showed that the organic phase was clear when the extraction capacity of Al was less than 5 g/L.If the extraction capacity of Al exceeded 5 g/L,it formed W/O of ME(micro emulsion),leading to form emulsion of the organic phase.When Al concentration of feed was less than 1 g/L,the aqueous phase would form O/W of ME.If aluminum was extracted by saponification P507 firstly,then the the organic phase loading aluminum extracted rare earth continually,the organic and aqueous phase formed emulsification easily.  相似文献   

9.
Emulsification troubled normal extraction process of rare earths due to the existence of non-rare earth impurities,especially Si,Al and Fe.Against this background,the effect of emulsification caused by Si,Al and Fe on the La extraction with saponification P507(2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester) in chloride medium was systematically investigated.A series of experiments were carried out to study the relationship of the extraction capacity of La and the concentration of impurities.ZPM-203 polarizing microscope was applied to investigate the morphology of emulsification,and the cation exchange extraction mechanism of Fe and Al as well as La was clarified by IR spectra.The results showed that a low concentration of Si in organic phase would aggravate the emulsification with Al,and the formation of ME(micro emulsion) and club-shaped polymer would result in emulsification in the extraction of mixtures of Si and Al,single Fe,respectively.Furthermore,the accumulation of impurity such as Si,Al and Fe in the organic phase would severely reduce the extraction capacity of La simultaneously.  相似文献   

10.
The extraction of Nd^3+ and Sm^3+, including the extraction and stripping capability as well as the separation effect of Nd^3+ or Sm^3+, from a sulfuric acid medium, by mixtures of di-(2-ethylhexyl) phosphoric acid (HDEHP, H2A2(0)) and 2-ethylhexyl phosphoric acid mono-2-ethylhexyl ester (HEH/EHP, H2L2(0)) were studied. The distribution ratios and synergistic coefficients of Nd^3+ and Sm^3+ in different acidities were also determined. A synergistic extractive effect was found when HDEHP and HEH/EHP were used as mixed extractants for Sm^3+ or Nd^3+. The chemical compositions of the extracted complex were determined as Nd.(HA2)2-HL2 and Sm.(HA2)2-HL2. The extraction equilibrium constants, enthalpy change, and entropy change of the extraction reaction were also determined.  相似文献   

11.
The extraction of low concentration rare earth elements at high phase ratio was investigated. The traditional extraction set-up, such as mixer-settler, have drawbacks of easy emulsification, difficult separation and low efficiency if operated at the above condition. Membrane dispersion micro-extractor,owing to its well-dispersed, high surface-to-volume ratio and fast mass transfer rate, was employed in our work. Nd(Ⅲ),Eu(Ⅲ),Er(Ⅲ) were chosen to represent light, medium,heavy rare earth elements(REEs). The extraction process of REEs with 2-ethylhexyl phosphoric acid-2-ethylhexyl ester(P507) was investigated by membrane dispersion micro-extractors. Firstly, the extraction equilibrium of these three elements was explored in the stirred conical flasks, and it is indicated that the extraction efficiencies can be 0.95, 0.97 and 0.98, respectively within 40 min at phase ratio of 100:1. Then the effects of operational conditions such as the residence time, organic and aqueous flow rates on extraction efficiency were also explored in micro-extractors. The results indicate that the efficiency decreases and then increases if increasing aqueous phase flow rate, residence time and droplets' diameter are the key factors of this process. Increasing the phase ratio reduces the extraction efficiency significantly. When the REEs solution has an initial pH of 4.00, the flow rates of continuous and dispersed phase are 40 and 1.6 mL/min,respectively, and 90 mg/L Nd(Ⅲ), Eu(Ⅲ) and Er(Ⅲ) is extracted by 1 mol/L P507 at the out-let length of8 m. The extraction efficiencies are 0.978,0.983 and 0.991, respectively. Finally the stripping process was also studied with the micro-extractor. The stripping efficiencies of Nd(Ⅲ), Eu(Ⅲ) and Er(Ⅲ) can reach0.99, 0.96 and 0.91, respectively when the out-let length is 8 m and the concentration of hydrochloric acid is 1 mol/L. The developed approach offers a novel and simple strategy on the fast extraction and enrichment of low concentration rare earth elements from waste water.  相似文献   

12.
Four monoalkyl esters of isoalkylphosphonic acids have been studied for the chromatographic separation ofrare earths (RE).The relationship between distribution ratios and acid concentration of the eluants forsamarium and ytterbium has been explored.The characteristics of these extractants loaded onto macroreticularpoly (methyl methacrylate) resin beads for the separation of lanthanum,cerium,praseodymium and neodymiumhave been compared.Among the extractants studied,mono(1-methylheptyl) ester of isooctylphosphonic acidwas found to be the best for RE separation.The acidity for separation is lower than any known P-containingextractants for the same purpose.For instance,with 1.73 mol·L~(-1) nitric acid as eluent,thulium,ytterbium andlutetium can be separated quantitatively.The extractant-loaded resins possess high column efficiency with goodkinetic characteristics.The extraction mechanism was also explored.  相似文献   

13.
The solvent extraction of La3 from hydrochloric acid solutions was investigated using bis (2, 4, 4-trimethylpentyl) monothiophosphinic acid (Cyanex 302, HL) as an extractant. The effect of .equilibrium of aqueous acidity on extraction of La^3 using Cyanex 302 in different diluents was discussed. The effects of extractant concentration and chloride ion on the extraction reaction were also studied. Stoichiometry of the extraction reactions and the nature of metal complexes formed were determined using slope analysis technique and IR measurement.  相似文献   

14.
The study on the solvent extraction for quantitative and selective separation of total rare earth metals from the polymetallic nodule leach liquor was investigated. The typical leach liquor bearing 0. 094 g/L total rare earth, 0. 23 g/L Mn, 0.697 g/L Cu, 0.2 g/L Fe, 0.01 g/L Co and 0.735 g/L Ni was subjected to the removal iron content by precipitation method using Ca(OH)2 at pH 3.95, prior to solvent extraction of rare earth metals. Three different organo-phosphoric acid reagents(D2EHPA, PC88 A, Cyanex 272) were used to ascertain their performances and selectivity towards the loading of rare earth metals in presence of other base metals. Based on the results of eq. pH effect, the performances of above three extractants followed the order as: D2EHPA>PC88A>Cyanex 272. To ensure the absence of extraction of base metals(Cu, Co, Ni), the eq. pH of the solution was optimized at the level of 2.21, though higher rare earth metal extraction efficiency was observed at higher eq. pH with either of the extractants. The complete process flow diagram for substantial recovery of total rare earth was developed using D2 EHPA. Extraction isotherm plot was constructed at A:O=12:1, 3-stages and pHe=2.21, using 0.8 mol/L D2 EHPA and the predicted condition of this study was further confirmed by 6-Cycles Counter Current Simulation(CCS) study. The stripping of total rare earth from loaded organic phase(LO) was conducted using HCl solution. Mc-Cabe Thiele diagram study carried out at A:O=1:5 using 4 mol/L HCl showed that three theoretical stages were needed for quantitative stripping of total rare earth. The subsequent stripped solution resulted thus led to contain total rare earth of 5.6 g/L indicating a very high enrichment of total metals by solvent extraction(SX) process.  相似文献   

15.
The extractive separation properties and the extractive regularity of the lanthanide elements by fivedi(2-ethylhexyl)alkyl phosphonates with various alkyl structure:di(2-ethylhexyl)chloromethyl phosphonateCH_2ClP(O) (OC_8H_(17)-i)_2(1),di(2-ethylhexyl)β-chloroethyl phosphonate ClCH_2CH_2P(O) (OC_8H_(17)-i)_2(2),di(2-ethylhexyl)α-chloroethyl phosphonate CH_3CHClP(O)(OC_8H_(17)-i)_2 (3),and correspondingdi(2-ethylhexyl)methyl phosphonate CH_3P(O)(OC_8H_(17)-i)_2 (4),di(2-ethylhexyl)ethyl phosphonateC_2H_5P(O) (OC_8H_(17)-i)_2 (5),in nitrate system have been studied.The coordination compounds were prepared.The structure of these extractants and their coordination compounds were further explored by IR and ~(31)P NMRspectra.  相似文献   

16.
The Nd(III) extraction in flat renewal supported liquid membrane(FRSLM),with polyvinylidene fluoride membrane and renewal solution including HNO3 solution as the stripping solution and di(2-ethylhexyl) phosphoric acid(D2EHPA) dissolved in kerosene as the membrane solution,was investigated.The effects of pH in the feed phase,volume ratio of membrane solution to stripping solution,concentra-tion of HNO3 solution and concentration of carrier in the renewal phase on extraction of Nd(III) were also studied,respectively.As a result,the optimum extraction conditions of Nd(III) were obtained when concentration of HNO3 solution was 4.00 mol/L,concentration of D2EHPA was 0.100 mol/L,and volume ratio of membrane solution to stripping solution was 1.00 in the renewal phase,and pH was 4.60 in the feed phase.When initial concentration of Nd(III) was 2.00×10-4 mol/L,the extraction percentage of Nd(III) was up to 92.9% in 75 min.  相似文献   

17.
Study on non-saponification extraction process for rare earth separation   总被引:2,自引:0,他引:2  
The purpose of this study was to overcome the disadvantages of ammonia-nitrogen wastewater pollution and high cost of sodium saponification in rare earth separation process. The study focused on the non-saponification extraction technology with magnesia. The influences of the content and particle size of magnesia, reaction time, reaction temperature, and O/A on cerium extraction rate were also discussed. The results showed that the hydrogen ions of extractant were exchanged by rare earth ions when organic extractant and rare earth solution were mixed with magnesia powder, and then the exchanged hydrogen dissolved magnesia to make the acidity of the system stable. The magnesium ions were not participated in the extraction reaction. Non-saponification extraction process of rare earth had been realized. The cerium extraction rate could reach up to 99% in single stage within the optimal reaction conditions.  相似文献   

18.
The chemical reaction between lanthanum oxide and molybdenum carbide was studied by thermodynamic calcu-lation, thermal analysis and in-situ X-ray Photoelectron Spectroscopy. The theoretical results show that at the environment allowing for the evaporation of lanthanum, such as in high vacuum, La2O3 in the La2O3-Mo materials can be reduced to metallic lanthanum by molybdenum carbide (Mo2C). To confirm the conclusion, many analysis methods such as XRD, SPS, and TG-DTA were taken. The experimental results show that the chemical state of lanthanum changes during heat-ing. It was proved, for the first time, that reacted metallic lanthanum appears at the surface of this kind of material at high temperature.  相似文献   

19.
Magnesium bicarbonate solution is considered as an environmentally friendly extractant saponification agent for the solvent extraction of rare earth elements due to its advantage of minimum water pollution.In order to reveal the extraction regularity, optimize production-process and guide the use of this new extraction system, the extraction of Nd(Ⅲ) in chloride medium with HEH/EHP saponified by magnesium bicarbonate solution was investigated with the self-designed constant interfacial area cell. Besides, the effects of stirring rate, temperature, specific interfacial area and concentration of Mg-HEH/EHP on the extraction rate of Nd(Ⅲ) were systematically investigated. Results show that, the rate of extraction is governed by both diffusion and chemical reaction, and the extraction reaction takes place at the interface. The apparent activation energy of the extraction reaction is 16.88 kJ/mol. The corresponding rate equation is deduced. The mechanisms and rate-determining step are speculated based on interfacial reaction models, which is consistent with the experimental results.  相似文献   

20.
In the present work, a novel α-aminophosphonate extractant(Cextrant 230) was synthesized for the extraction and recovery of cerium and thorium from sulphate medium. The introduction of amine group into the phosphate molecule would enhance the extraction of Ce(Ⅳ) and Th(Ⅳ). The effects of extractant concentration, H_2SO_4 concentration and temperature on the metal extraction were investigated in detail. It was found that the extraction of Ce(Ⅳ), Th(Ⅳ) and REs(La, Gd, Yb) in sulphate medium decreased in the following order: Ce(Ⅳ)Th(Ⅳ)REs(Ⅲ). A solvent extraction process to extract and recover cerium and thorium from bastnasite leaching was proposed, in which the purities of cerium and thorium products reached 99.9% and 99% with yield of 92% and 98%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号