首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
动压反馈网络是抑制液压伺服系统阻尼比的最关键装置之一。目前其时间常数τ基本按湍流模型进行设计,实际机理并不清楚,造成动压反馈式伺服阀的试验结果与理论结果偏差较大。为了提高时间常数τ的设计精度,提出了一种新的建模方法。在低频段,建立基于层流模型参数τ的设计方法;在高频段,通过黑箱辨识方法建立时间参数τ的线性模型。仿真与试验结果对比表明,该设计方法能够大大提高伺服阀建模的准确性,从而为伺服阀动压反馈网络设计奠定理论基础。  相似文献   

2.
液压缸在液压伺服系统中实际上相当于一个液压弹簧,液压弹簧的固有频率是影响伺服阀测试系统最重要的因素之一。在动压反馈伺服阀测试系统中,伺服阀的最大测试信号要受到液压弹簧固有频率的限制。因此,设计结构合理并且固有频率满足要求的加载液压缸具有十分重要的意义。在此基础上,根据被测伺服阀的最大反馈流量与反馈压差,计算出液压缸的总容积。通过详细的结构设计计算,最终可得到液压缸的活塞直径、活塞杆直径和行程。设计了一种专门适用于动压反馈伺服阀测试用的四通对称动态加载液压缸。该液压缸已在动压反馈伺服阀测试系统中投入使用,并取得了预期效果。  相似文献   

3.
本文对电液伺服阀控制液压马达(油缸)的位置反馈电液伺服系统稳定性的计算、校正、实验、调试等问题进行了探讨。并用它成功的进行了升降台式数控铣床和某大型数控机床工作台电液伺服拖动系统的设计与调试。可供设计调试电液伺服(随动)系统参考。  相似文献   

4.
针对目前电反馈伺服阀控制参数整定周期长、调试效果不理想的问题,介绍一种电反馈伺服阀控制参数的半物理整定方法。采用计算机数值模型代替真实模拟电路对伺服阀机械液压部分进行实时反馈控制;通过更改虚拟参数,得到半物理最优控制参数,并以此为依据调节实际模拟电路。试验表明,该方法相比直接调节模拟电路参数的方法具有参数调节范围大、调试及观测方便、调试数据实时保存等优点,适用于伺服阀研制开发阶段的结构参数优化试验,可以快速找到与当前结构参数匹配的控制参数,为新型电液伺服元件的研制提供技术支撑。  相似文献   

5.
以日本KYB工业株式会社生产的MK动圈式全电反馈伺服阀为例,介绍了动圈式全电反馈伺服阀的特点,详细描述了动圈式全电反馈伺服阀的测试方法以及自动检测系统的原理,并给出了利用该自动检测系统对MK阀的测试结果。  相似文献   

6.
喷嘴挡板式电液伺服阀制造过程复杂、生产难点多.随着先进检测和测试设备的使用,通过对产品的零件进行细化检测,对问题零件所属伺服阀进行性能测试试验,分析测试曲线,发现了测试曲线上非线性段特性表现与伺服阀零件质量问题的对应关系.总结了喷嘴挡板式电液伺服阀主要零件容易发生的显微级别制造问题,及各零件在存在制造问题的状态下对伺服阀性能的具体影响.  相似文献   

7.
在对伺服阀进行维修、检测、调试过程中,是否掌握了正确的调试方法,直接影响到修复后伺服阀的各项技术指标的好坏。因此,针对不同结构类型的伺服阀,采用相应的调试方法成了每一位伺服阀检修工作者必须研究的一个课题。以下就力士乐及穆格双喷嘴挡板伺服阀的调试方法作...  相似文献   

8.
研究了一种基于动压反馈的气液伺服导向器,采用液阻加弹簧活塞蓄能器的动压反馈装置,提高气液伺服导向器的阻尼比,从而改善了气液伺服导向器的稳定性、响应速度和精度。  相似文献   

9.
电触式伺服阀武汉化工学院李国忠关键词电触式伺服阀,开关控制,结构,工作原理电触式伺服问(图1)由电触式阀、蜗轮减速器和马达构成。电触式阀由信号输入转轴1和带螺母的反馈转轴4、5、6等零件组成。信号输入转轴1由手轮驱动,其上装有带左电触片11和右电触片...  相似文献   

10.
针对某炼钢厂宽板坯连铸机结晶器电液伺服振动系统故障频繁、三级电反馈伺服阀工作寿命短的问题,文章从液压系统设计、元件选型、工作环境等多方面着手,进行了可靠性评估,发现所选用电液伺服阀与环境不适应是故障主要原因,并针对性地进行了替代改型和系统优化,使结晶器振动系统恢复正常生产,可靠性提高。  相似文献   

11.
叙述了射流管式三级电液伺服阀的结构及其工作原理,针对其结构建立了数学模型,并加入PD校正环节,导入MATLAB软件进行仿真,获得其阶跃响应曲线和开环伯德图。通过时域和频域分析表明,加入PD校正环节,使得系统局部相位超前,增加了系统的幅值裕度和相位裕度,因此其可大幅缩短三级阀的调整时间并增强其稳定性,同时反馈杆刚度和功率级滑阀阀芯面积对三级阀的动态响应有很大影响。通过有限元分析了圆形截面和矩形截面的反馈杆刚度,结果表明,在等面积时,由于矩形截面惯性矩大于圆形截面惯性矩,在相同的力作用下,矩形截面的反馈杆的位移较小,因此其反馈杆刚度较大,可提高先导级阀的动态反馈性能,从而更有利于三级阀的动态响应。  相似文献   

12.
为满足某气体发生系统安装空间小、重量轻、动态响应快、控制精度高等要求,设计了高压气动压力伺服控制系统,并采用高压电-气伺服阀实现了负载压力的高响应高精度控制。建立了系统数学模型,包括高压气瓶热力学方程、高压电-气伺服阀传递函数与流量方程、负载容腔压力变化与排气流量方程等子模型,并设计了反馈线性化PID控制器。基于MATLAB/Simulink平台建立了高压气动系统仿真模型,仿真研究了高压气瓶容积与初始气源压力、负载容腔排气孔通径等参数对系统负载压力控制性能的影响规律。研究结果为该系统的优化设计与实验研究提供重要理论依据。  相似文献   

13.
文章提出并分析了一种用力反馈式流量伺服阀与手动节流阀配合使用,从而对负载进行压力控制的液压桥路。该桥路本质为C型半桥:伺服阀单腔输出,节流阀通过调节回油液阻来调节负载腔压力的起始点,伺服阀根据负载需求改变流量输出。整个压力控制回路为纯机械式控制,稳定可靠,精度可达0.1 bar。  相似文献   

14.
双喷嘴挡板伺服阀非线性建模及其线性化   总被引:3,自引:0,他引:3  
为从理论上研究喷嘴挡板伺服阀控电液伺服系统的动静态性能,需要建立较精确的电液伺服阀数学模型。考虑伺服阀喷嘴挡板处阀口流动等非线性因素影响,分析电液伺服阀的电信号输入到阀芯位移的输出特性,建立双喷嘴挡板两级伺服阀的非线性数学模型以描绘实际系统;根据实际模型特点,采用输入/输出线性化方法中的非线性状态反馈变换获得局部线性化模型,并通过分析系统零动态稳定性,从理论上证明了线性化模型的有效性。以常规泰勒展开线性化为对象,对提出的输入/输出线性化模型的精确性进行相应的仿真和实际试验对比。结果表明,该方法所建模型更接近实际系统,具有较强的鲁棒性,可用于精确分析实现阀控液压伺服系统的动静态性能。  相似文献   

15.
以10 L/min力反馈两级电液伺服阀为研究对象,在MATLAB/Simulink下建立伺服阀的仿真模型,通过仿真得到伺服阀的阶跃响应曲线、伯德图和动态性能指标,为力反馈两级电液伺服阀的参数优化、性能提升和工程应用提供了参考。  相似文献   

16.
有源先导级控制的电液比例流量阀特性研究   总被引:2,自引:0,他引:2  
针对现有技术采用压差补偿器或插装式流量传感器控制流量,会降低阀的通流能力,增加系统的功率损失和发热;大流量场合只能通过阀开口面积间接控制流量,受负载变化影响控制精度低;低工作压力范围可控性差、动态响应慢;大通径采用三级结构,构造复杂等问题,提出用小功率伺服电动机驱动小排量液压泵/马达(有源)、结合液压晶体管(Valvistor),构造新的低能耗、高可控的电液比例流量阀。该方法可扩大阀的流量控制范围,提高阀在低压时的动态响应。建立阀的静态数学模型,分析获得影响阀负载流量特性最主要的因素是反馈节流槽预开口量大小;进一步建立阀的动态数学模型,获得主阀芯稳定条件。根据阀的结构组成,建立阀的仿真模型,仿真分析主阀各参数对主阀性能的影响。结果表明,反馈节流槽预开口量越小,主阀负载流量特性越好;主阀口压降越大,主阀芯响应越快;但由动态数学模型可知主阀口压降太大且先导流量较小时,阀的稳定性也会降低。研究也表明,在保证主阀良好的动态特性前提下,可通过使先导泵/马达转速随负载压力变化,实现对阀的流量补偿,从而改善阀的负载流量特性。  相似文献   

17.
磁流变伺服阀的设计与动态特性研究   总被引:1,自引:0,他引:1  
利用磁流变液体可控的特性,设计了一新型伺服阀--磁流变伺服阀,介绍了该阀的结构特点及工作原理,建立了由该阀构成系统的数学模型并进行了理论分析.分析表明,与传统液压控制系统相比,由磁流变伺服阀控制的系统更易获得反应速度快、稳定性高、精度高等动态特性,能满足一般小功率、低压系统控制系统的要求.  相似文献   

18.
高精度压力伺服控制系统研究   总被引:5,自引:0,他引:5  
采用流量伺服阀构造压力伺服控制系统,实现了气体压力的高精度高响应伺服控制,所得结果已满足某开口装备半实物仿真要求。  相似文献   

19.
针对大吨位惯性摩擦焊机多缸液压顶锻系统强干扰、强非线性的特点,面向多缸系统同步性能的高精度、强抗干扰的要求,基于自行设计的一套具有位置反馈的三缸液压顶锻系统,建立了阀控缸系统以及位置反馈同步系统的动态响应数学模型,并且提出了以伺服阀控液压系统为基础,在偏差耦合控制方式下采用模糊PID对控制参数进行优化的多缸同步控制策略。在MATLAB Simulink中对该控制算法进行仿真研究,并与传统PID控制算法进行对比。结果表明,所设计的控制策略实现了千吨级负载下多缸系统同步误差小于0.05 mm的稳定输出,具有较好的鲁棒性和较高的同步控制精度,为国产大吨位惯性摩擦焊机液压伺服系统提供设计参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号