首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
冯定  陶玉瑾  赵钰  张红 《润滑与密封》2022,47(7):111-116
S密封是为满足石油天然气行业的高温、高压和复杂的流体介质工况而专门设计的一类特殊密封圈。为研究S密封的结构强度和密封性能,建立S密封圈二维轴对称模型,仿真研究其在安装工况和作业工况下压缩量、介质压力和温度载荷对密封面结构强度和密封性能的影响规律。结果表明:在安装工况时, S密封圈弹性体最大等效应力和最大剪切应力出现在密封圈内部中心位置,最大等效应力分布呈轴向对称;在作业工况时,最大等效应力和最大剪切应力在中间靠近间隙位置;随着外过盈量和介质压力增大,弹性体最大等效应力和内外接触应力均呈现增大趋势;温度增加时,最大等效应力和内外最大接触应力均增加,但最大等效应力增加趋势较小。研究结果为S密封圈的性能和强度优化研究提供理论支撑。  相似文献   

2.
为提高液压支架的工作稳定性和可靠性,增强活塞杆蕾形密封圈的密封性能,对液压支架蕾形密封圈的应力分布进行了研究。在研究中,基于泄漏量理论计算公式推导密封圈与活塞杆间接触应力分布对密封性能的影响,应用ANSYS有限元软件建立蕾形密封圈受力模型,并分析不同载荷工况下平均应力分布规律,以及预压缩量10%、外载荷30 MPa时密封圈与活塞杆间接触应力的分布规律。研究结果显示,在不同载荷工况下,蕾形密封圈的平均应力分布和密封性能始终满足要求,主唇口位置的密封圈与活塞杆间接触压力峰值和两侧的接触应力梯度变化可达到良好的密封效果。  相似文献   

3.
真空环境中O形密封圈泄漏分析   总被引:1,自引:0,他引:1  
使用ABAQUS有限元分析软件建立了O形密封圈的二维轴对称模型,重点研究了压缩率与介质压力对O形圈接触应力、接触长度的影响,结果表明:O形密封圈的接触应力大小与接触宽度随着压缩率和介质压力的增大而增大。除此之外,通过应用Roth.A真空泄漏理论分析了压缩率、表面粗糙度、温度对O形密封圈密封性能的影响,结果表明:O形密封圈的泄漏率随着压缩率的增大而减小,随着表面粗糙度和温度的增大而增大,为了保证O形圈的密封性能,应当适当提高压缩率与密封表面的加工精度。  相似文献   

4.
建立了X形(星形)密封圈的有限元计算模型,研究了预压缩量、摩擦因数、介质压力、橡胶硬度对其密封性能和力学性能的影响。为提高密封圈的密封性能,延长使用寿命,对其横截面形状进行了改进,并对其静密封和往复动密封性能进行了分析。研究结果表明,X形密封圈的Von Mises应力和接触应力随着摩擦因数的增大而逐渐降低,但随介质压力、橡胶硬度的增大而增大;而结构的特殊性使得X形密封圈Von Mises应力随预压缩量的增大而减小;改进密封圈不但继承X形密封圈的优点,而且实现了三道密封功能,在保持良好密封性能的同时改善了结构的应力集中现象;特别是在往复动密封中,改进密封圈的应力波动较小,密封性能优于X形密封圈,避免了X形结构触角过早发生疲劳失效和撕裂,延长了密封圈的使用寿命。  相似文献   

5.
针对某国产化活塞组合密封圈内泄漏问题,基于ANSYS Workbench模拟活塞组合密封圈装配过程的变形情况及接触应力变化情况,采用流体压力渗透载荷的加载方式模拟介质压力对密封圈弹性体的作用,研究活塞组合密封圈弹性体压缩率、硬度以及工作压力对其密封性能的影响。研究表明:弹性体上、下密封部位(BC段、DE段)最大接触应力略小于工作压力与装配下弹性体最大接触应力之和,其密封性能良好;弹性体压缩率及硬度越大,其最大接触应力越大。通过对活塞组合密封圈挡圈及导向环开口间隙以及开口角度的研究,得出挡圈厚度偏小以及导向环开口间隙偏大是导致活塞组合密封圈内泄漏的主要原因。试验结果表明:弹性体采用氢化丁晴(HNBR-80)、挡圈采用聚酯弹性体(TPEE)、导向环采用尼龙(PA66)材料的活塞组合密封圈满足某装备液压缸的使用要求。  相似文献   

6.
为准确模拟密封圈的装配安装过程的接触压力和流体压力对密封圈的作用,采用ABAQUS自动收缩配合方式仿真分析密封圈装配过程的接触静压,采用流体压力渗透载荷的加载方式模拟介质压力对密封圈的作用,研究组合密封中O形圈压缩率和工作介质压力对齿形滑环式组合密封圈密封性能的影响。研究表明:采用自动收缩配合方式能有效解决常规的位移加载方法引起的计算的接触压力不准确问题,采用流体压力渗透载荷的加载方式可自动寻找唇口接触与分离的临界点,计算高压流体加载时可得到很好的收敛解,有效解决了通过边界法加载介质压力时计算结果不准确的问题。计算结果表明:当压缩率超过一定值时,齿形滑环组合密封圈的最大Mises应力和主密封区域最大接触应力随工作介质压力的增加而增加,最大接触应力满足密封的要求;但当压缩率太低时,密封圈在高介质压力下产生较大的形变造成很大的应力集中,导致密封失效。  相似文献   

7.
介绍了O形圈角密封槽的结构特点及压缩量的计算方法.针对某角密封槽设计泄漏故障,利用有限元分析软件Ansys分析O形圈不同受力下的接触应力.通过分析发现泄漏的原因为:三角形密封槽结构O形圈受介质力后,轴向接触应力明显减小.根据分析结果制定改进方案,通过改变三角形密封槽的角度以减小介质力对接触应力的影响,解决泄漏问题,为三...  相似文献   

8.
丁腈橡胶O形圈密封性能试验研究   总被引:1,自引:0,他引:1  
研制一种静环用O形圈性能试验装置,该装置利用步进电机通过螺旋差动机构对芯轴施加轴向载荷,实现被测O形圈的四面受压,进而可模拟静环与静环座O形圈的密封。基于该装置在不同工况下对丁晴橡胶O形密封圈密封面之间的接触应力和泄漏量进行实验测量。结果表明:O形密封圈在预压缩率一定的情况下,接触应力随着工作介质压力的增大而增大;在工作介质压力一定的情况下,接触应力随着预压缩率的增大而减小,但减少的幅度并不大; O形密封圈的内径对其在不同工况下的接触应力有一定的影响,但影响不大。  相似文献   

9.
采用有限元分析软件ANSYS对旋转尾管悬挂器轴承的密封结构进行有限元分析,并进行参数及结构优化。应用ANSYS的PDS模块分析密封圈的几何尺寸对最大接触应力和最大等效应力的影响,得到对最大接触应力和最大等效应力影响最为灵敏的共同参数为唇夹角、密封圈宽度、密封圈长度、密封圈根部长度。应用ANSYS的优化设计模块对4个共同参数进行优化,得到优化序列。优化后密封圈与挡圈的最大接触应力增大了44%,最大等效应力降低了29.1%。  相似文献   

10.
为解决斯特林机活塞杆处介质泄漏的问题,对其帽式密封结构进行改进,并利用有限元分析软件ANSYS建立其二维轴对称模型;基于实际运行工况,分析比较改进密封结构的性能指标,并通过改变边界条件,探究介质压力、摩擦因数及活塞杆运行速度对改进密封结构性能影响规律。结果表明:改进的密封结构消除了原有结构O形圈的应力集中问题,提高了最大接触应力,且在增加有效密封面积40%的同时又将O形圈的最大等效应力降低了近50%;3个关键参数中介质压力对密封性能的影响力最大,对于改进密封结构,在介质压力为6~8.5 MPa时其密封性能最佳。  相似文献   

11.
黄发  马健  吴正洪 《润滑与密封》2020,45(7):128-135
针对某型发动机高压转子连接结构的密封问题,设计一种U形金属密封环,分析研究密封环的密封和强度性能,探究结构参数(包括根部倒圆、壁厚、环高、接触面曲率半径、密封环接触面角度、密封环配合件角度)对密封环最大等效应力、最大接触应力的影响,基于ANSYS Workbench优化设计模块,采用代理模型结合遗传算法的优化技术对密封环结构进行优化。结果表明:安装压缩率范围为3.56%~6.33%时,可保证安装和工作2种工况下密封和强度的要求;最大等效应力与壁厚成正比关系,而与根部倒圆和环高成反比关系;接触面曲率半径对最大等效应力影响较小,但最大接触应力随着接触面曲率半径的增加而增加;选择合适的角度范围时,密封环接触面角度和密封环配合件角度对最大等效应力、最大接触应力影响均较小。密封环结构优化后,最大等效应力在安装和工作2种工况下分别减小了34.3%和30.4%,同时密封环质量减少了6.1%。对设计的U形金属密封环随整机进行了试验,结果表明U形金属密封环密封性能良好,验证了设计的合理性。  相似文献   

12.
以典型工况下盾构机主驱动单唇形密封圈为研究对象,利用单轴拉伸试验得到密封圈丁腈橡胶材料的应力-应变曲线,确定Yeoh三阶模型的材料参数;建立单唇形密封圈的二维轴对称有限元模型,研究介质压力、压差、摩擦因数和温度对其密封性能的影响规律。研究表明:介质压力主要影响最大接触应力,随着介质压力的增加,最大接触应力呈线性增加;介质压差主要影响最大接触应力和接触长度,随着介质压差的增加,最大接触应力先线性增加然后基本保持不变,而接触长度呈非线性增加;温度变化对密封性能的影响可以忽略;在考虑的工况条件下,单唇形密封圈唇口与旋转轴接触处产生的最大接触应力始终大于介质压力,密封性能良好。  相似文献   

13.
针对汽车排气管密封问题,设计一种适合汽车排气系统密封的V形金属密封环。该密封环采用平面接触、小接触压力方式,在满足密封要求的同时避免了较大的预紧力;在波谷处采用圆弧过渡,降低了密封环的整体刚度,侧边倾斜一定角度以增大密封环的回弹性能。利用ANSYS Workbench软件对V形金属密封环常温预紧和高温工况下的密封性能进行分析,在保证密封强度要求下确定安装时合适的轴向压缩量;分析密封环结构参数对密封性能的影响,发现壁厚、环宽、波谷半径、接触圆半径、开口角度对密封性能影响较大。基于Design-Expert软件对密封环结构参数进行多目标优化,从而降低了密封环最大等效应力,提高了最大接触压力,减小了密封环质量,并通过相关实验验证有限元模型的可靠性。  相似文献   

14.
针对汽车发动机水泵O形橡胶密封圈宽温度域的工况特点,构建其与温度相关的Mooney-Rivlin材料模型,探讨冷却液温度、压力、摩擦因数等对O形密封圈接触压力、等效应力以及密封性的影响。研究表明:温度的升高将引起接触压力及等效应力的峰值呈幂指数减小,导致密封可靠性降低,但在宽温度域(-40~130℃)工况下,接触压力的峰值始终远大于液体压力,因此该密封圈具有可靠的密封性;液体压力的增大虽然会引起接触压力峰值增大,但其增大的速度比液体压力增大的速度小,因此将引起密封可靠性下降;摩擦因数对密封可靠性的影响不大。  相似文献   

15.
李小芬  叶小强 《润滑与密封》2020,45(11):136-142
为研究往复运动弹簧蓄能密封圈的低温特性,通过构建等效弹簧建立二维轴对称模型,采用ANSYS分析弹簧蓄能密封圈在常温环境下装配和介质加压、由常温到低温过程中及低温加压过程中夹套的应力和摩擦力的变化。结果表明:常温和低温下夹套内外唇口为主要承压区,内外唇口的应力、接触压力、接触宽度和摩擦力随压力升高而增大;低温下的接触压力比常温下大,但接触宽度比常温下小,且摩擦力是常温下的2~3倍。仿真结果表明弹簧蓄能密封圈在常温和低温下具有良好的密封性能,通过常温氦气、低温液氮下的密封性能试验,验证了仿真分析结果的正确性,同时也验证了该弹簧蓄能内密封圈在常温和低温下良好的工作性能。  相似文献   

16.
温度影响质子交换膜燃料电池(PEMFC)的密封性能和力学行为,因而影响其使用寿命和可靠性。为研究PEMFC在热力耦合下的密封性能和力学行为,建立PEMFC单电池和多电池结构的二维模型,研究密封系统在不同工作温度下的应力-应变分布,讨论橡胶密封圈压缩比、双极板错位和密封垫尺寸对PEMFC密封性能和力学性能的影响。结果表明:温度对密封圈的Mises应力和膜电极组件(MEA)框架接触压力有很大影响;在不同工作温度下单电池和多电池结构的密封性能相似,应力和接触压力分布差别也不大,因此单电池结构的研究结论可以推广到多电池结构;随着橡胶密封圈压缩比和密封圈尺寸的增加,燃料电池密封性能得到改善;而双极板错位会加剧MEA框架的变形;高应力区出现在橡胶密封圈的横截面内部,容易导致局部应力集中和密封失效。  相似文献   

17.
针对某重卡轮毂轴承早期失效的问题,设计一种具有刚-柔组合密封槽的密封单元;采用半简化有限元法,建立密封单元的有限元模型,分析密封圈的压缩率、硬度和密封槽尺寸对接触应力和等效应力的影响;利用VB语言编写有限元分析的接口程序,以接触应力和等效应力为密封性能的评价指标,对关键影响因素进行优化。〖JP2〗结果表明:随压缩率和材料硬度的增大,最大接触应力和等效应力均增大,随密封槽尺寸的增加等效应力减小,而最大接触应力先减小后增大;O形圈的压缩率对密封性能的影响最大,其次为材料硬度、密封槽尺寸。给出密封单元关键因素的取值范围:初始压缩率15%~20%,O形圈材料邵氏硬度75~80,密封槽尺寸1.6~1.7 mm,并通过动态注油试验进行验证。  相似文献   

18.
为研究斯特林发动机活塞杆无油润滑帽式组合密封的动密封性能,利用有限元分析软件Abaqus建立帽式密封的二维轴对称有限元模型,基于系统实际工况,研究工质压力对帽式密封性能的影响,得到不同压力下的有效密封区域。静态密封性能分析结果表明,帽式密封环与活塞杆的接触应力是密封的关键,动态密封性能分析结果表明,两者接触应力和密封区域随压力增大而增大,且外行程接触应力略大于内行程。通过热力耦合动态仿真模拟,分析环境温度、摩擦因数、往复运动速度对动密封性能的影响。结果表明:环境温度对帽式密封温度场影响不大,热源主要来自摩擦热;往复运动速度对其密封性能影响也不大,而摩擦因数的影响较大,摩擦因数越小,帽式密封的密封效果越好,使用寿命越长。  相似文献   

19.
陶玉瑾  赵钰  易帅  张红  冯定 《润滑与密封》2022,47(1):94-100
为研究MEC密封圈结构对密封性能和结构强度的影响,以油管悬挂器MEC非金属密封为研究对象,在分析密封圈的结构与原理的基础上,考虑工作压力、安装方式和密封圈内、外过盈量的情况下,基于刚柔接触模型,建立MEC密封有限元仿真计算模型;利用单因素敏感性分析方法,研究密封圈各结构参数对密封性能和结构强度的影响.结果表明:MEC密...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号