首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
针对半挂车制动器磨损严重、能量损耗等问题,对半挂车的再生制动系统进行了研究,提出了液压蓄能器式再生制动系统。通过建立仿真模型,并针对制动与驱动工况建立数学模型,分析蓄能器容积与预充压力、泵/马达排量对液压再生制动系统的影响。研究结果表明,增大泵/马达排量,能提升制动能量回收效率;制动能量回收效率随着蓄能器的容积大小而不同;蓄能器预充压力增大,制动距离短,但不利于制动能量的回收与驱动位移的增加。再生制动系统能增加半挂车的行驶位移,提高燃油经济性,为液压混合动力研究提供了参考。  相似文献   

2.
传统工程机械采用的皮囊式蓄能器储能密度低,当配合回转机构进行驱动和能量回收时,蓄能器内外压差较小时能量充放效果差,为此提出一种基于恒压蓄能器调控下制动能回收方案。介绍了恒压蓄能器原理,对比恒压蓄能器与皮囊蓄能器储能密度。回转机构制动能回收方案采用马达结合恒压蓄能器进行能量回收,通过SimulationX软件搭建仿真模型,分析回收方案回收效率。因恒压蓄能器加工工艺难度较大,尤其对气密性和气囊要求较高,提出恒压蓄能器工艺方案,并进行了样机试制。对变截面活塞进行设计,并采用铝合金材料进行加工,通过有限元方法对变截面活塞进行强度分析。结果表明:充放油过程油液压力保持恒定时,恒压蓄能器回收并释放的能量占惯性动能的42%;有限元分析表明铝合金变截面活塞满足活塞蓄能器强度要求。仿真和恒压蓄能器的试制为下一步制动能回收试验提供基础。  相似文献   

3.
提出一种起重机回转制动的能量回收系统,该系统由液压回路和控制回路组成,采用多种液压阀体组成的液压调节器,回收回转马达制动时的能量,并以液压能的形式储存在蓄能器中。当蓄能器释放能量时,蓄能器中液压油驱动变量马达和电动机经过分动箱的动力分配后带动主泵对工作负载做功,并且流经变量马达的液压油可进入其他执行机构,实现了液压油流量的再生,减少了能量回收转换环节,提高了能量回收效率,高效地运转了发动机,降低了油耗。  相似文献   

4.
针对液压再生制动系统的能量回收效率和制动安全性问题,对汽车液压再生制动系统的参数匹配进行了研究。建立了液压制动能量回收系统试验台,进行了蓄能器初始压力变化、系统最高压力变化、蓄能器总体积变化的实验研究;建立了液压再生制动系统试验台数学模型,基于Matlab/Simulink建立了液压制动能量回收系统的仿真模型,并进行了与台架相对应的仿真实验,研究了液压制动能量回收系统的能量回收效率;对液压制动能量回收系统进行了整车研究,采用ADAMS/car建立了某车型整车,并与Matlab进行了仿真研究。首先研究了液压制动能量回收系统单因素对能量回收效率和制动安全性的综合影响,其次采用正交实验法研究了多因素对能量回收和制动安全性的综合影响。研究结果表明,合理的液压制动能量回收系统参数能够显著提高能量回收效率和制动安全性。  相似文献   

5.
针对纯电动汽车续驶里程低、电池充电难等问题,对纯电动汽车的再生制动系统进行了研究,通过比较多种液压制动能量回收方案与储能方式,提出了定压源飞轮液压再生制动系统。为提高所提出的再生制动系统的能量回收效率,以泵/马达和蓄能器工作参数作为变量进行了试验研究和基于AMESim软件的仿真研究,通过仿真分析和试验研究对比,找出了最佳的参数匹配。研究结果表明,该再生制动系统的能量回收效率随着蓄能器容积的大小不同和液压泵/马达的排量不同而改变,泵/马达排量越大回收的能量越多,但是随着排量的增加泵/马达上的阻力也增加了,高于一定值后能量回收效率会下降;蓄能器容积越大,可回收的能量越多。对该系统的研究值得借鉴,可为合理匹配电动汽车液压再生制动系统参数提供依据。  相似文献   

6.
合理配置系统各主要参数,是影响混合动力车辆制动性能及节能效果的关键问题。以轮边驱动液压混合动力车辆为原型,分析了轮边驱动液压混合动力车辆能量回收系统的工作原理,以原型车的1/4为基础,对辅助动力元件(蓄能器)、二次元件(液压泵/马达)的参数进行了理论分析;建立了能量回收系统的AMESim仿真模型,进行仿真分析;搭建了试验台架,开展试验验证。结果表明:在满足制动性能要求的前提下,增大蓄能器容积以及降低蓄能器最小工作压力有利于回收制动能量;二次元件的排量对制动性能的影响比较大,对制动能量的回收率影响很小;蓄能器工作压力越低,能量密度越大。  相似文献   

7.
介绍了能量回收系统的工作原理,并以其为对象建立了车辆力学模型及液压系统数学模型。对车辆制动时,能量回收过程中蓄能器压力变化及二次元件转速变化,利用MATLAB/Simulink进行仿真分析。仿真结果表明:设定不同的蓄能器初始工作压力,会导致不同的制动过程,从而车辆可以根据行驶工况的不同,选用不同的蓄能器初试工作压力。  相似文献   

8.
液驱混合动力车辆的制动能量回收研究   总被引:3,自引:0,他引:3  
建立了液驱混合动力车辆制动能量回收的数学模型,对制动能量回收过程中的能量损耗、能量回收和制动性能进行仿真计算和分析,并对制动初始压力和蓄能器容积等主要设计参数对制动能量回收效率以及车辆制动性能的影响进行了定量分析,为液驱混合动力车辆液压系统进一步的优化设计和控制打下了良好的基础.  相似文献   

9.
液压挖掘机上车回转系统起动时,由于大惯性、高起动压力而造成大量的溢流损失;制动时回转动能转化为热能,能量损耗大。为此提出主被动复合驱动回转系统,在主驱动回转系统的基础上增设被动回路,被动液压马达用于降低主驱动液压马达的驱动功率及回收制动能量;为降低起动过程中的溢流损失,对主动回路采用进出口独立控制。针对主动马达和被动马达不同排量比对蓄能器压力的影响,提出了改变被动马达排量的优化方案。首先,进行元件匹配计算;然后,建立挖掘机主被动复合驱动回转系统联合仿真模型,与原机回转系统进行能耗对比。结果表明:主被动复合驱动系统在1个工作循环内能耗降低了35.9%~53.1%,实现了节能,提高了工作效率。  相似文献   

10.
液驱混合动力车辆通过双向液压变量马达排量的改变,将车辆的制动能储存在液压蓄能器中.因此,有必要对双向液压变量马达排量控制机构的响应特性和蓄能器在储能及放能过程中的能量损耗进行研究.建立了排量控制机构的模型,并通过实验得到了关键元件高速开关阀的所需参数,分析了影响响应特性的因素;建立了蓄能器与连接管路的数学模型,对储能和放能过程中的能量损耗影响因素进行了分析.所得结论对液驱混合动力车辆的设计和动态特性分析具有参考意义.  相似文献   

11.
由于需要较频繁地启动和制动,公交车在运行过程中会存在较大的能量损失。为了提升整车的燃油效率,现有的公交车多采用油电混合系统进行能量回收。近年来,关于大型车辆的油液回收技术研究逐渐增多,研究成果表明该回收技术具有较好的发展前景。针对成都市公交车的实际运行工况及特点,采用并联混合系统对公交车的制动能量进行液压系统回收。基于理论计算结果专门进行回收试验研究,包括试验方案设计、试验台制作和回收系统性能指标测试等,针对液压回收系统中的蓄能器容积和变量泵排量这两个因素,得到了它们对于系统回收效率的影响曲线,对混合动力公交车制动能量液压回收的深入研究具有积极意义。  相似文献   

12.
为了提高以蓄能器为储能装置的液压挖掘机回转系统的能量回收效率,研究了某工况下蓄能器不同体积及充气压力对能量回收效率的影响。在AMESim软件中建立回转节能系统模型并进行仿真分析,仿真结果表明:在重载工况下,蓄能器充气压力一定时,蓄能器体积越大,能量回收效率越低;蓄能器体积一定时,蓄能器充气压力越高,能量回收效率越高。同时搭建了试验平台对仿真结果进行验证。结果表明:仿真结果和试验结果是一致的,在满足可回收能量的前提下,体积小、充气压力高的蓄能器能有效提高能量回收效率。  相似文献   

13.
1.作辅助动力源 工程机械在运行过程中会产生很大的能量损失,利用蓄能器可实现系统节能,减小能量损失,提高传动效率。蓄能器的作用如下。 (1)在制动过程中,泵/马达呈泵的工况向蓄能器供油,使其回收制动能量,形成制动力矩,制动力矩的大小可通过改变泵/马达的排量进行控制。  相似文献   

14.
针对大惯性回转机构在制动时,动能都以热能的方式损失的问题,提出一种四配流轴向柱塞马达和蓄能器结合的制动能回收方法。不同体积、初始压力的蓄能器对惯性负载的回转制动能的回收和再利用的效果不同,为寻求较合理的蓄能器参数以达到较高的能量回收效果,手动调整仿真参数较为繁琐,提出采用基于多核CPU的快速并行优化方法用于蓄能器参数优化。首先,大惯性负载的驱动机构采用四配流轴向柱塞马达,其能量系统回收模型在Simulation X搭建,进而导出成具有CVODE求解加速的可执行程序,脱离仿真软件平台,在Windows操作系统独立运行;然后,利用导出的可执行程序与VC++进行二次开发,以微粒群算法解决特定工况下蓄能器选型的问题,充分利用多核CPU实现并行优化以提高仿真速度。仿真结果表明,在特定负载下得到优化后的蓄能器的参数,蓄能器回收并释放的能量占惯性动能的24.5%,回收油液全部得到释放。采用基于多核CPU的并行优化方法,仿真效率提高了10倍以上,该方法对系列化液压产品的快速开发具有一定的借鉴价值。  相似文献   

15.
 破拆机器人臂系负载敏感系统具有功率自适应节能降耗、结构紧凑等特点,应用十分广泛。然而负载敏感系统中负载敏感泵流量压力仅与系统最大负载相适应,导致多臂复合动作时小负载回路上压力补偿阀能量损失较大。为进一步降低能耗,利用液压马达回收小负载回路压力补偿阀的能量损失,并带动液压泵将回收能量储存在蓄能器中,蓄能器回收能量通过扭矩耦合的方式回馈至主泵实现能量回收。通过AMESim建模仿真结果表明,增加能量回收系统可使复合动作能量回收利用率提升20%以上,系统阶跃响应与未安装能量回收的系统响应基本一致,且速度振荡减小改善了瞬态响应。  相似文献   

16.
挖掘机在工作过程中制动频繁,能量损耗大,为了回收制动回转过程中的的能量,设计了液压混合动力挖掘机的回转系统,利用蓄能器回收制动能量。阐述了液压混合动力的工作原理,并进行了试验研究和分析。结果表明:液压混合动力降低了液压泵的功率损耗和液压马达的压力波动;在节能方面,蓄能器的能量回收效率达到74.75%,达到了节能的目的。  相似文献   

17.
建立了静液压储能传动汽车能量再生系统各分立元件蓄能器、变量泵/马达、飞轮以及液压回路的分析模型和系统模型.以蓄能器压力和温度、泵/马达的扭矩和效率、压力损失和飞轮的转速为时间参变量,采用四阶Rugge-Kutta算法求解微分方程.以此计算的系统变量来确定能量损耗和循环效率.计算结果表明,能量损耗主要产生于液压泵/马达,约占总损失的24%,当蓄能器的热时间常数为60 s时,蓄能器基本处于绝热状态,热能损失很少;系统循环效率在50%~75%,与计算时飞轮的初速度和转动惯量有关.  相似文献   

18.
针对现有的电液混合动力轨道车,为提高其制动能量回收效率,利用AMESim建立液压再生制动模型,在保证制动性能的基础上,对电液轨道车制动初速、摩擦制动力以及蓄能器的参数对回收效率的影响进行分析。结果表明:制动初速越高,能量回收效率越低;摩擦制动力提供的比例越小,能量回收效率越高;蓄能器充气压力越大,容积越大,能量回收效率越高,为了提高能量回收效率,需对蓄能器参数进行合理选择。  相似文献   

19.
全液压塔机通常带载回转,转动惯性大。回转制动时,转台惯性动能会导致系统油路压力冲击,最终以热能形式散失造成能量浪费并使油温升高,致使系统性能下降。利用蓄能器和泵/马达二次元件给出一种塔机回转制动能量回收及再利用系统,回转制动的惯性能量回收后用于塔机散热系统的辅助动力,以避免回收能量对系统主回路运行产生影响。仿真结果表明,与原回转液压系统相比,该系统回转制动过程更加平稳,能够保证制动精度,回收的制动惯性能量用于塔机散热系统辅助可节能17.48%。  相似文献   

20.
介绍电动叉车势能回收液压系统的节能工作原理,利用Amesim仿真软件进行模型仿真,分析系统的节能效果以及蓄能器初始充气压力与系统能量回收效率的关系,最后通过实验研究来检验理论分析和仿真模型的有效性以及仿真结果的正确性,得出蓄能器的最优充气压力以及系统的能量回收效率,为电动叉车工作效率的进一步优化提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号