共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
用溶胶-凝胶法制备锂离子蓄电池材料 总被引:14,自引:2,他引:14
为了论证溶胶 凝胶工艺应用于锂离子蓄电池材料合成的可行性 ,综述了该工艺在锂离子蓄电池材料合成方面的最新进展。用该方法制备的正极材料氧化钴锂的可逆电容量可达 1 5 0mAh·g-1,氧化镍锂可达 1 6 0mAh·g-1以上 ,氧化锰锂可达 1 30mAh·g-1,氧化钒可达 41 0mAh·g-1,负极材料锡的氧化物的容量可达 6 0 0mAh·g-1,它们与用通常的固相反应所得的材料相比 ,电化学性能有明显的提高 ,该方法还将促进新型的全固态锂离子蓄电池的发展。 相似文献
3.
4.
微粒溶胶-凝胶法合成LiNi0.75 Co0.25O2及表征 总被引:1,自引:2,他引:1
通过LiOH·H2O、Ni(OAc)2·4H2O和Co(OAc)2·4H2O在水和乙醇混合溶剂中形成微粒溶胶-凝胶来合成LiNi0.75Co0.25O2.TG-DTA、XRD和充放电实验结果表明:当原料n(Li):n(Ni):n(Co)=1.05:0.75:0.25时,形成的凝胶经300℃预处理、600℃顸烧之后,再在氧气氛中700℃焙烧24h,所得产物的层状晶体结构最完整,其首次放电容量为176.6mAh/g;经过10次循环之后,放电容量还有170.1 mAh/g,容量衰减3.7%,显示出较高的初始放电容量及良好的循环性能. 相似文献
5.
采用溶胶-凝胶法合成锂离子电池正极材料LiFePO4,并用X射线衍射、充放电循环测试、循环伏安法扫描等,研究了LiFePO4的物相结构、表面形貌以及电化学性能等,并探索了合成工艺条件对材料的电化学性能的影响.结果表明,680℃下焙烧得到的材料表现出较好晶体形貌,样品的颗粒大小比较均匀,同时电化学性能较好,10 mA/g... 相似文献
6.
采用溶胶-凝胶法合成锂离子电池正极材料Li1.05CrxMn1.95-xO4(x=0,0.05,0.10),焙烧温度为650、700、750℃,用X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)对产物的结构和形貌作了表征,并对材料的电化学性能进行考察,在室温下恒流充放电38次.结果表明:该方法制备的正极材料为单一... 相似文献
8.
9.
Li_2FeSiO_4正极材料具有理论容量高、对环境友好的优点。但是其制备过程中极易产生杂质相,严重影响了电化学性能。对溶胶凝胶法制备的Li_2FeSiO_4利用X射线衍射(XRD)、Rietveld全谱拟合、扫描电子显微镜(SEM)等方法对比分析了预烧条件和烧结温度对产物物相、晶体结构、颗粒形貌的影响。研究结果表明:在预烧2 h,最终烧结温度850℃的条件下,制备得到了高纯Li_2FeSiO_4,其晶体结构属于P 2_1/n空间群,在室温0.05 C条件下初始放电比容量为145.77 mAh/g。 相似文献
10.
11.
高密度球形LiCoO2的制备及性能研究 总被引:12,自引:1,他引:12
球形化是LiCoO2正极材料的重要发展方向。采用控制结晶法合成球形b -Co(OH)2为前驱体,与Li2CO3混合,在750 ℃热处理16 h合成球形LiCoO2粉末。用X射线衍射和扫描电镜分析对b -Co(OH)2和LiCoO2粉末的结构进行了表征。充放电测试表明该球形LiCoO2正极材料具有优良的电化学性能:当充放电电流分别为0.2 C、1.0 C时,材料首次放电比容量分别为148.4 mAh·g-1和141.7 mAh·g-1,40次充放电循环后分别保持初始放电比容量的97.6%和91.7%。该球形LiCoO2粉末的松装密度高达1.9 g·cm-3,振实密度高达2.8 g·cm-3,远高于一般非球形LiCoO2正极材料。高密度球形LiCoO2正极材料用于锂离子蓄电池可以显著提高电池的比能量。 相似文献
12.
对商用锂离子蓄电池制作废料中LiCoO2进行了回收研究,提出了相应的回收方案采用N-甲基吡咯烷酮(NMP)在80℃剥离活性物质;采用NaOH溶解少量铝屑;通过热处理除去碳粉;再通过锂补偿法重新合成LiCoO2单相.对回收样进行了X射线衍射(XRD)、扫描电子显微镜(SEM)、比表面积(BET),傅里叶变换红外光谱(FT-IR),振实密度,电感耦合等离子体光谱(ICP)和电化学性能测试.结果表明回收LiCoO2首次充放电容量分别152mAh·g-1和144 mAh·g-1,电化学效率为94.7%;100次循环后为135 mAh·g-1,且仍持有92.5%的平台效率.回收样符合制作商用锂离子蓄电池的要求. 相似文献
13.
用PAN作造孔剂制备聚合物锂离子电池隔膜 总被引:2,自引:1,他引:2
在制备聚合物锂离子电池隔膜的过程中,探索出一种简单方法制备PVDF膜.该方法选用不溶于PVDF溶剂的聚合物PAN做造孔剂,避免了非溶剂的使用,使薄膜的成分更单纯,既简化了制膜的过程,又减少了电池当中副反应的发生,使电池的性能得以提高. 相似文献
14.
15.
16.
17.
锂离子电池的正极材料 总被引:8,自引:2,他引:8
综述了国外锂离子蓄电池正极材料的进展,着重叙述了LiCoO2、LiNiO2和LiMn2O4的合成方法。Li-CoO2主要用Li2CO3和CoCO3为原料,在900℃温度下合成。最近通过Li2CO3和CoCO3在400℃下反应制成了“低温”LiCoO2(LT-LiCoO2),(LT-LiCoO2)的电化学性质不同于高温合成的LiCoO2。制取化学计量的LiNiO2比较困难,采用LiNO3和Ni(OH)2为原料在700℃~800℃温度下进行反应制得了Li0.96Ni1.04O2材料。采用MnO2和Li2CO3或LiNO3为原料,在750℃温度下合成了Li0.93Mn2O4。在400℃低温下采用Li2CO3和MnCO3为原料,在Li/Mn=2/3和Li/Mn=4/5情况下分别合成了Li2Mn4O9和Li4Mn5O12。 相似文献
18.