首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents new schedulability tests for preemptive global fixed-priority (FP) scheduling of sporadic tasks on identical multiprocessor platform. One of the main challenges in deriving a schedulability test for global FP scheduling is identifying the worst-case runtime behavior, i.e., the critical instant, at which the release of a job suffers the maximum interference from the jobs of its higher priority tasks. Unfortunately, the critical instant is not yet known for sporadic tasks under global FP scheduling. To overcome this limitation, pessimism is introduced during the schedulability analysis to safely approximate the worst-case. The endeavor in this paper is to reduce such pessimism by proposing three new schedulability tests for global FP scheduling. Another challenge for global FP scheduling is the problem of assigning the fixed priorities to the tasks because no efficient method to find the optimal priority ordering in such case is currently known. Each of the schedulability tests proposed in this paper can be used to determine the priority of each task based on Audsley’s approach. It is shown that the proposed tests not only theoretically dominate but also empirically perform better than the state-of-the-art schedulability test for global FP scheduling of sporadic tasks.  相似文献   

2.
The multiprocessor scheduling of collections of real-time jobs is considered. Sufficient tests are derived for feasibility analysis of a collection of sporadic jobs where job migration between processors is forbidden. The fixed-priority scheduling of real-time jobs with job migration is analyzed, and sufficient tests of schedulability are obtained for the deadline-monotonic (dm) and the earliest-deadline-first (edf) scheduling algorithms. The feasibility and schedulability tests of this paper may be applied even when the collection of jobs is incompletely specified. The applicability of these tests to the scheduling of collections of jobs that are generated by systems of recurrent real-time tasks is discussed. In particular, sufficient conditions for the dm scheduling of sporadic task systems are derived and compared to previously-known tests.  相似文献   

3.
Kernelization algorithms for the cluster editing problem have been a popular topic in the recent research in parameterized computation. Most kernelization algorithms for the problem are based on the concept of critical cliques. In this paper, we present new observations and new techniques for the study of kernelization algorithms for the cluster editing problem. Our techniques are based on the study of the relationship between cluster editing and graph edge-cuts. As an application, we present a simple algorithm that constructs a 2k-vertex kernel for the integral-weighted version of the cluster editing problem. Our result matches the best kernel bound for the unweighted version of the cluster editing problem, and significantly improves the previous best kernel bound for the weighted version of the problem. For the more general real-weighted version of the problem, our techniques lead to a simple kernelization algorithm that constructs a kernel of at most 4k vertices.  相似文献   

4.
In this paper, we present Para Miner which is a generic and parallel algorithm for closed pattern mining. Para Miner is built on the principles of pattern enumeration in strongly accessible set systems. Its efficiency is due to a novel dataset reduction technique (that we call EL-reduction), combined with novel technique for performing dataset reduction in a parallel execution on a multi-core architecture. We illustrate Para Miner’s genericity by using this algorithm to solve three different pattern mining problems: the frequent itemset mining problem, the mining frequent connected relational graphs problem and the mining gradual itemsets problem. In this paper, we prove the soundness and the completeness of Para Miner. Furthermore, our experiments show that despite being a generic algorithm, Para Miner can compete with specialized state of the art algorithms designed for the pattern mining problems mentioned above. Besides, for the particular problem of gradual itemset mining, Para Miner outperforms the state of the art algorithm by two orders of magnitude.  相似文献   

5.
In this article, we formulate and study quantum analogues of randomized search heuristics, which make use of Grover search (in Proceedings of the 28th Annual ACM Symposium on Theory of Computing, pp. 212–219. ACM, New York, 1996) to accelerate the search for improved offsprings. We then specialize the above formulation to two specific search heuristics: Random Local Search and the (1+1) Evolutionary Algorithm. We call the resulting quantum versions of these search heuristics Quantum Local Search and the (1+1) Quantum Evolutionary Algorithm. We conduct a rigorous runtime analysis of these quantum search heuristics in the computation model of quantum algorithms, which, besides classical computation steps, also permits those unique to quantum computing devices. To this end, we study the six elementary pseudo-Boolean optimization problems OneMax, LeadingOnes, Discrepancy, Needle, Jump, and TinyTrap. It turns out that the advantage of the respective quantum search heuristic over its classical counterpart varies with the problem structure and ranges from no speedup at all for the problem Discrepancy to exponential speedup for the problem TinyTrap. We show that these runtime behaviors are closely linked to the probabilities of performing successful mutations in the classical algorithms.  相似文献   

6.
Inclusion/exclusion and measure and conquer are two central techniques from the field of exact exponential-time algorithms that recently received a lot of attention. In this paper, we show that both techniques can be used in a single algorithm. This is done by looking at the principle of inclusion/exclusion as a branching rule. This inclusion/exclusion-based branching rule can be combined in a branch-and-reduce algorithm with traditional branching rules and reduction rules. The resulting algorithms can be analysed using measure and conquer allowing us to obtain good upper bounds on their running times. In this way, we obtain the currently fastest exact exponential-time algorithms for a number of domination problems in graphs. Among these are faster polynomial-space and exponential-space algorithms for #Dominating Set and Minimum Weight Dominating Set (for the case where the set of possible weight sums is polynomially bounded), and a faster polynomial-space algorithm for Domatic Number. This approach is also extended in this paper to the setting where not all requirements in a problem need to be satisfied. This results in faster polynomial-space and exponential-space algorithms for Partial Dominating Set, and faster polynomial-space and exponential-space algorithms for the well-studied parameterised problem k-Set Splitting and its generalisation k-Not-All-Equal Satisfiability.  相似文献   

7.
The Hamiltonian Cycle problem is the problem of deciding whether an n-vertex graph G has a cycle passing through all vertices of G. This problem is a classic NP-complete problem. Finding an exact algorithm that solves it in ${\mathcal {O}}^{*}(\alpha^{n})$ time for some constant α<2 was a notorious open problem until very recently, when Björklund presented a randomized algorithm that uses ${\mathcal {O}}^{*}(1.657^{n})$ time and polynomial space. The Longest Cycle problem, in which the task is to find a cycle of maximum length, is a natural generalization of the Hamiltonian Cycle problem. For a claw-free graph G, finding a longest cycle is equivalent to finding a closed trail (i.e., a connected even subgraph, possibly consisting of a single vertex) that dominates the largest number of edges of some associated graph H. Using this translation we obtain two deterministic algorithms that solve the Longest Cycle problem, and consequently the Hamiltonian Cycle problem, for claw-free graphs: one algorithm that uses ${\mathcal {O}}^{*}(1.6818^{n})$ time and exponential space, and one algorithm that uses ${\mathcal {O}}^{*}(1.8878^{n})$ time and polynomial space.  相似文献   

8.
We study the complexity of some algorithmic problems on directed hypergraphs and their strongly connected components (Sccs). The main contribution is an almost linear time algorithm computing the terminal strongly connected components (i.e. Sccs which do not reach any components but themselves). Almost linear here means that the complexity of the algorithm is linear in the size of the hypergraph up to a factor α(n), where α is the inverse of Ackermann function, and n is the number of vertices. Our motivation to study this problem arises from a recent application of directed hypergraphs to computational tropical geometry. We also discuss the problem of computing all Sccs. We establish a superlinear lower bound on the size of the transitive reduction of the reachability relation in directed hypergraphs, showing that it is combinatorially more complex than in directed graphs. Besides, we prove a linear time reduction from the well-studied problem of finding all minimal sets among a given family to the problem of computing the Sccs. Only subquadratic time algorithms are known for the former problem. These results strongly suggest that the problem of computing the Sccs is harder in directed hypergraphs than in directed graphs.  相似文献   

9.
Łukasz Jeż 《Algorithmica》2013,67(4):498-515
We give a memoryless scale-invariant randomized algorithm ReMix for Packet Scheduling that is e/(e?1)-competitive against an adaptive adversary. ReMix unifies most of previously known randomized algorithms, and its general analysis yields improved performance guarantees for several restricted variants, including the s-bounded instances. In particular, ReMix attains the optimum competitive ratio of 4/3 on 2-bounded instances. Our results are applicable to a more general problem, called Item Collection, in which only the relative order between packets’ deadlines is known. ReMix is the optimal memoryless randomized algorithm against adaptive adversary for that problem.  相似文献   

10.
Given a graph with n vertices, k terminals and positive integer weights not larger than c, we compute a minimum Steiner Tree in $\mathcal{O}^{\star}(2^{k}c)$ time and $\mathcal{O}^{\star}(c)$ space, where the $\mathcal{O}^{\star}$ notation omits terms bounded by a polynomial in the input-size. We obtain the result by defining a generalization of walks, called branching walks, and combining it with the Inclusion-Exclusion technique. Using this combination we also give $\mathcal{O}^{\star}(2^{n})$ -time polynomial space algorithms for Degree Constrained Spanning Tree, Maximum Internal Spanning Tree and #Spanning Forest with a given number of components. Furthermore, using related techniques, we also present new polynomial space algorithms for computing the Cover Polynomial of a graph, Convex Tree Coloring and counting the number of perfect matchings of a graph.  相似文献   

11.
Although the earliest-deadline-first (EDF) policy is known to be optimal for preemptive real-time task scheduling in uniprocessor systems, the schedulability analysis problem has recently been shown to be $\mathit{co}\mathcal{NP}$ -hard. Therefore, approximation algorithms, and in particular, approximations based on resource augmentation have attracted a lot of attention for both uniprocessor and multiprocessor systems. Resource augmentation based approximations assume a certain speedup of the processor(s). Using the notion of approximate demand bound function (dbf), in this paper we show that for uniprocessor systems the resource augmentation factor is at most $\frac{2e-1}{e} \approx1.6322$ , where e is the Euler number. We approximate the dbf using a linear approximation when the analysis interval length of interest is larger than the relative deadline of the task. For identical multiprocessor systems with M processors and constrained-deadline task sets, we show that the deadline-monotonic partitioning (that has been proposed by Baruah and Fisher) with the approximate dbf leads to an approximation factor of $\frac{3e-1}{e}-\frac{1}{M} \approx 2.6322-\frac{1}{M}$ with respect to resource augmentation. We also show that the corresponding factor is $3-\frac{1}{M}$ for arbitrary-deadline task sets. The best known results so far were $3-\frac{1}{M}$ for constrained-deadline tasks and $4-\frac {2}{M}$ for arbitrary-deadline ones. Our tighter analysis exploits the structure of the approximate dbf directly and uses the processor utilization violations (which were ignored in all previous analysis) for analyzing resource augmentation factors. We also provide concrete input instances to show that the lower bound on the resource augmentation factor for uniprocessor systems—using the above approximate dbf—is 1.5, and the corresponding bound is 2.5 for identical multiprocessor systems with an arbitrary order of fitting and a large number of processors. Further, we also provide a polynomial-time approximation scheme (PTAS) to derive near-optimal solutions under the assumption that the ratio of the maximum relative deadline to the minimum relative deadline of tasks is a constant, which is a more relaxed assumption compared to the assumptions required for deriving such a PTAS in the past.  相似文献   

12.
A circle graph is the intersection graph of a set of chords in a circle. Keil [Discrete Appl. Math., 42(1):51–63, 1993] proved that Dominating Set, Connected Dominating Set, and Total Dominating Set are NP-complete in circle graphs. To the best of our knowledge, nothing was known about the parameterized complexity of these problems in circle graphs. In this paper we prove the following results, which contribute in this direction:
  • Dominating Set, Independent Dominating Set, Connected Dominating Set, Total Dominating Set, and Acyclic Dominating Set are W[1]-hard in circle graphs, parameterized by the size of the solution.
  • Whereas both Connected Dominating Set and Acyclic Dominating Set are W[1]-hard in circle graphs, it turns out that Connected Acyclic Dominating Set is polynomial-time solvable in circle graphs.
  • If T is a given tree, deciding whether a circle graph G has a dominating set inducing a graph isomorphic to T is NP-complete when T is in the input, and FPT when parameterized by t=|V(T)|. We prove that the FPT algorithm runs in subexponential time, namely $2^{\mathcal{O}(t \cdot\frac{\log\log t}{\log t})} \cdot n^{\mathcal{O}(1)}$ , where n=|V(G)|.
  相似文献   

13.
Reasoning about the termination of equational programs in sophisticated equational languages such as Elan, Maude, OBJ, CafeOBJ, Haskell, and so on, requires support for advanced features such as evaluation strategies, rewriting modulo, use of extra variables in conditions, partiality, and expressive type systems (possibly including polymorphism and higher-order). However, many of those features are, at best, only partially supported by current term rewriting termination tools (for instance mu-term, C i ME, AProVE, TTT, Termptation, etc.) while they may be essential to ensure termination. We present a sequence of theory transformations that can be used to bridge the gap between expressive membership equational programs and such termination tools, and prove the correctness of such transformations. We also discuss a prototype tool performing the transformations on Maude equational programs and sending the resulting transformed theories to some of the aforementioned standard termination tools.  相似文献   

14.
We study the Cutwidth problem, where the input is a graph G, and the objective is find a linear layout of the vertices that minimizes the maximum number of edges intersected by any vertical line inserted between two consecutive vertices. We give an algorithm for Cutwidth with running time O(2 k n O(1)). Here k is the size of a minimum vertex cover of the input graph G, and n is the number of vertices in G. Our algorithm gives an O(2 n/2 n O(1)) time algorithm for Cutwidth on bipartite graphs as a corollary. This is the first non-trivial exact exponential time algorithm for Cutwidth on a graph class where the problem remains NP-complete. Additionally, we show that Cutwidth parameterized by the size of the minimum vertex cover of the input graph does not admit a polynomial kernel unless NP?coNP/poly. Our kernelization lower bound contrasts with the recent results of Bodlaender et al. (ICALP, Springer, Berlin, 2011; SWAT, Springer, Berlin, 2012) that both Treewidth and Pathwidth parameterized by vertex cover do admit polynomial kernels.  相似文献   

15.
A planning and scheduling (P&S) system takes as input a domain model and a goal, and produces a plan of actions to be executed, which will achieve the goal. A P&S system typically also offers plan execution and monitoring engines. Due to the non-deterministic nature of planning problems, it is a challenge to construct correct and reliable P&S systems, including, for example, declarative domain models. Verification and validation (V&V) techniques have been applied to address these issues. Furthermore, V&V systems have been applied to actually perform planning, and conversely, P&S systems have been applied to perform V&V of more traditional software. This article overviews some of the literature on the fruitful interaction between V&V and P&S.  相似文献   

16.
In the k-Feedback Arc/Vertex Set problem we are given a directed graph D and a positive integer k and the objective is to check whether it is possible to delete at most k arcs/vertices from D to make it acyclic. Dom et al. (J. Discrete Algorithm 8(1):76–86, 2010) initiated a study of the Feedback Arc Set problem on bipartite tournaments (k-FASBT) in the realm of parameterized complexity. They showed that k-FASBT can be solved in time O(3.373 k n 6) on bipartite tournaments having n vertices. However, until now there was no known polynomial sized problem kernel for k-FASBT. In this paper we obtain a cubic vertex kernel for k-FASBT. This completes the kernelization picture for the Feedback Arc/Vertex Set problem on tournaments and bipartite tournaments, as for all other problems polynomial kernels were known before. We obtain our kernel using a non-trivial application of “independent modules” which could be of independent interest.  相似文献   

17.
The Contractibility problem takes as input two graphs G and H, and the task is to decide whether H can be obtained from G by a sequence of edge contractions. The Induced Minor and Induced Topological Minor problems are similar, but the first allows both edge contractions and vertex deletions, whereas the latter allows only vertex deletions and vertex dissolutions. All three problems are NP-complete, even for certain fixed graphs H. We show that these problems can be solved in polynomial time for every fixed H when the input graph G is chordal. Our results can be considered tight, since these problems are known to be W[1]-hard on chordal graphs when parameterized by the size of H. To solve Contractibility and Induced Minor, we define and use a generalization of the classic Disjoint Paths problem, where we require the vertices of each of the k paths to be chosen from a specified set. We prove that this variant is NP-complete even when k=2, but that it is polynomial-time solvable on chordal graphs for every fixed k. Our algorithm for Induced Topological Minor is based on another generalization of Disjoint Paths called Induced Disjoint Paths, where the vertices from different paths may no longer be adjacent. We show that this problem, which is known to be NP-complete when k=2, can be solved in polynomial time on chordal graphs even when k is part of the input. Our results fit into the general framework of graph containment problems, where the aim is to decide whether a graph can be modified into another graph by a sequence of specified graph operations. Allowing combinations of the four well-known operations edge deletion, edge contraction, vertex deletion, and vertex dissolution results in the following ten containment relations: (induced) minor, (induced) topological minor, (induced) subgraph, (induced) spanning subgraph, dissolution, and contraction. Our results, combined with existing results, settle the complexity of each of the ten corresponding containment problems on chordal graphs.  相似文献   

18.
Despite a large body of work on XPath query processing in relational environment, systematic study of queries containing not-predicates have received little attention in the literature. Particularly, several xml supports of industrial-strength commercial rdbms fail to efficiently evaluate such queries. In this paper, we present an efficient and novel strategy to evaluate not -twig queries in a tree-unaware relational environment. not -twig queries are XPath queries with ancestor–descendant and parent–child axis and contain one or more not-predicates. We propose a novel Dewey-based encoding scheme called Andes (ANcestor Dewey-based Encoding Scheme), which enables us to efficiently filter out elements satisfying a not-predicate by comparing their ancestor group identifiers. In this approach, a set of elements under the same common ancestor at a specific level in the xml tree is assigned same ancestor group identifier. Based on this scheme, we propose a novel sql translation algorithm for not-twig query evaluation. Experiments carried out confirm that our proposed approach built on top of an off-the-shelf commercial rdbms significantly outperforms state-of-the-art relational and native approaches. We also explore the query plans selected by a commercial relational optimizer to evaluate our translated queries in different input cardinality. Such exploration further validates the performance benefits of Andes.  相似文献   

19.
Measure & Conquer (M&C) is a prominent technique for analyzing exact algorithms for computationally hard problems, in particular, graph problems. It tries to balance worse and better situations within the algorithm analysis. This has led, e.g., to algorithms for Minimum Vertex Cover with a running time of $\mathcal{O}(c^{n})$ for some constant c??1.2, where n is the number of vertices in the graph. Several obstacles prevent the application of this technique in parameterized algorithmics, making it rarely applied in this area. However, these difficulties can be handled in some situations. We will exemplify this with two problems related to Vertex Cover, namely Connected Vertex Cover and Edge Dominating Set. For both problems, several parameterized algorithms have been published, all based on the idea of first enumerating minimal vertex covers. Using M&C in this context will allow us to improve on the hitherto published running times. In contrast to some of the earlier suggested algorithms, ours will use polynomial space.  相似文献   

20.
We describe PSurface, a C $++$ library that allows to store and access piecewise linear maps between simplicial surfaces in $\mathbb{R }^2$ and $\mathbb{R }^3$ . Piecewise linear maps can be used, e.g., to construct boundary approximations for finite element grids, and grid intersections for domain decomposition methods. In computer graphics the maps allow to build level-of-detail representations as well as texture- and bump maps. The PSurface library can be used as the basis for the implementation of a wide range of algorithms that use piecewise linear maps between triangulated surfaces. A few simple examples are given in this work. We document the data structures and algorithms and show how PSurface is used in the numerical analysis framework Dune and the visualization software Amira.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号