首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Field experiments were conducted in north-central and central Alberta to determine the effect of pellet size and depth of placement on yield and N uptake of barley from fall- and spring-applied urea. The application rate was 56 kg N ha–1. Fall incorporated commercial urea (0.01 g) gave 792 kg ha–1 lower yield and 15 kg ha–1 less N uptake than similarly applied commercial urea in spring on the average for the five experiments. The effectiveness of fall-applied N tended to be greater with large urea pellets (2.5 g), especially when they were placed 15 cm deep. Specifically, the relative yield efficiency of fallversus spring-applied N was 77% when the larger pellets were placed 4 cm deep and 95% when placed 15 cm deep. However, large pellets were less effective than commercial urea when both were applied in spring at sowing or two weeks before.  相似文献   

2.
Fall application of N fertilizers is often inferior to spring application for increasing yields of spring-sown cereal grains. The objective of this study was to determine the influence of date of application on efficiency of fall-applied N. Fall application dates were related to recovery of fall-applied N as mineral N in soil in spring, and related to yield and N uptake for spring-sown barley. Urea at a rate of 50 or 56 kg N ha–1 was incorporated into the soil to a depth of 10 cm. There were 2 or 3 application dates in the fall and one in the spring at sowing. Linear regression indicated recovery of fall-applied N as soil mineral N in spring increased from 30% with urea added on 19 September to 79% with addition on 6 November, but the predictability was low (r = 0.54**). Increase in grain yield, expressed as relative efficiency of fall- versus spring-applied N, was only 23% on 19 September but rose to 76% by 6 November (r = 0.68**). Results were similar for N uptake in grain. Other approaches to predicting the relative efficiency of fall- versus spring-applied N for yield increase were based on fall soil temperature at 5 cm depth, instead of fall calendar date. Soil temperature on the day of N application gave inferior correlation (r = –0.55**), but the use of number of days from application to first day of 0°C soil temperature gave a fairly close correlation (r = –0.77**). Soil degree-days accumulated from application to first day of 0°C soil temperature gave a similarly close correlation (r = –0.78**). In all, the efficiency of fall-applied urea was markedly increased by delaying the application into the late fall; and calendar date, number of days or soil degree-days from application to soil freezing all predicted the efficiency fairly well.(Contribution No. 599)  相似文献   

3.
In North America where the climate is cool enough only one crop is grown yearly, N fertilizers are sometimes applied in the previous fall rather than in the spring for fall- or spring-sown cereal grains. However, in areas where snow accumulates in winter, fall application of N fertilizers is generally inferior to spring application. Substantial nitrification takes place in winter and subsequent N loss occurs primarily in early spring by denitrification after the snow melt. Immobilization of N is also greater with fall- than spring-applied N fertilizers. Nitrogen is more efficiently retained in the soil as NH4 and thus more effectively used by plants if formation of nitrite (NO2) and NO3 is reduced or prevented by inhibiting nitrification. The nitrification is reduced when urea is placed in bands, because of high pH, ammonia concentration and osmotic pressure in the soil. The rate of nitrification is further reduced when urea is placed in widely-spaced nests (a number of urea prills placed together at a point below the soil surface) or as large urea granules (LUG) by reducing contact between the nitrifying bacteria and the NH4 released upon urea hydrolysis. A further reduction in nitrification from LUG can be obtained by addition of chemical nitrification inhibitors (such as dicyandiamide (DCD)) to LUG. The concentration of a chemical inhibitor required to suppress nitrification decreases with increasing granule size. The small soil-fertilizer interaction zone with placement of urea in nests or as LUG also reduces immobilization of fertilizer N, especially in soils amended with crop residues. The efficiency of fall-applied N is improved greatly by placing urea in nests or as LUG for small cereal grains. Yields of spring-sown barley from nests of urea or LUG applied in the fall are close to those obtained with spring-applied urea prills incorporated into the soil. Delaying urea application until close to freeze-up is also improved the efficiency of fall-applied N. This increased effectiveness of urea nests or LUG is due to slower nitrification, lower N loss over the winter by denitrification, and reduced immobilization of applied N. Fall application of LUG containing low rates of DCD slows nitrification, reduces over-winter N loss, and causes further improvement in yield and N uptake of winter wheat compared to urea as LUG alone in experiments in Ontario; in other experiments in Alberta there is no yield advantage from using a nitrification inhibitor with LUG for barley. Placement of LUG or nests of urea in soil is an agronomically sound practice for reducing N losses. This practice can eliminate or reduce the amount of nitrification inhibitor necessary to improve the efficiency of fall-applied urea where losses of mineral N are a problem. The optimum size of urea nest or LUG, and optimum combination of LUG and an efficient nitrification inhibitor need to be determined for different crops under different agroclimatic conditions. The soil (texture, CEC, N status), plant (winter or spring crop, crop geometry, crop growth duration and cultivar) and climatic (temperature, amount and distribution of precipitation) factors should be taken into account during field evaluation of LUG. There is a need to conduct region-specific basic research to understand mechanisms and magnitudes of N transformations and N losses in a given ecosystem. Prediction of nitrification from LUG or urea nests in various environments is needed. In nitrification inhibition studies with LUG and chemical nitrification inhibitors, measurements of nitrifier activity will be useful. Finally, there is need for development of applicators for mechanical placement of LUG or urea prills in widely-spaced nests in soil.  相似文献   

4.
The availability of N fertilizer to the crops under zero tillage versus conventional tillage may be affected by position of applied N, N immobilization and N loss from soil. The objectives of this study was to determine the influence of tillage, time of application and method of placement on the recovery of15N-labelled urea in barley (Hordeum vulgare L.) plants and in soil. Field experiments were conducted during 1984–85 at two locations (Rimbey and Ellerslie) in north-central Alberta. The lowest N recovery in barley plants occurred with surface broadcasting on zero tillage or with incorporation on conventional tillage. Placing urea in bands (23 or 46 cm lateral spacing) or nests (at poits 23 or 46 cm apart) increased the plant N recovery substantially. The plant N recovery was markedly lower with fall application than spring-applied N. For spring broadcast application, the N recovery in the plant was lower under zero tillage than conventional tillage. The15N recovery in soil (immobilized N) at harvest was greater with broadcast compared to bands or nests, and immobilized N was much greater with fall rather than spring application. The ratios of recoveries of15N in plant:soil with banding or nesting tended to be higher on zero tillage compared to conventional tillage. In all, placing urea in bands or nests increased the recovery of applied N in plants and decreased the amount of immobilized N under both zero and conventional tillage. The plant N recovery was inferior with fall application, but less so with bands or nests on zero tillage.(Scientific Paper No. 647)  相似文献   

5.
Conventional as well as modified nitrogen sources and application methods were evaluated under rainfed lowland conditions in heavy clay soils of Bihar, India for 4 years. Modified nitrogen sources, viz. sulfur-coated urea (SCU) and urea super-granules (USG) were tested against prilled urea (PU) under four levels of N (0, 29, 58 and 87 kg N/ha) in the wet season. A high yielding nonphotoperiod sensitive, long duration variety Pankaj was grown in all the four years.Point placement of USG and basal incorporation of SCU resulted in significantly higher panicle numbers per square meter, 100 grain weight and grain yield at all the levels of N tested. The unfilled grain percentage was lower in USG and SCU treatments.Regression analysis using a multifertilizer response model (MRM) showed that rice responded significantly to PU in three years out of four years, to SCU in four years and USG in three years.Economic analysis viz. input and output analysis based on the price of fertilizer (1 kg N as PU at $0.5; USG and SCU costing 10% more than PU), rough rice (ranging from 18.0 to 20.0 $ per ton) and labour wages at 1.0 $ per man day unit, also showed that USG and SCU are more input efficient than PU.  相似文献   

6.
Alternative N fertilizer management practices are needed to increase productivity and N use efficiency in lowland rice (Oryza sativa L.). In 1986 dry season, a field study using15N-labeled urea evaluated the effect of time and method of fertilizer N application on grain yield and N use efficiency. Conventional fertilizer application was compared with band placement of liquid urea and point placement of urea supergranules (USG). Grain yields were significantly higher with either band or point placement than with broadcast and incorporation or surface application. Partial pressure of NH3 (NH3) was significantly reduced when N was deep-placed.15N balance data show that fertilizer N applied basally and incorporated gave a total15N recovery of 52% and crop (grain + straw) recovery of 30%. Band placement of liquid urea N resulted in 82–90% total and 57–65% crop15N recovery. USG point placement gave 94% total and 70% crop15N recovery. Deep placement of second N application gave only slightly higher (98%)15N recovery compared with broadcast application (89%).  相似文献   

7.
An objective of the International Network on Soil Fertility and Fertilizer Evaluation for Rice (INSFFER) network is to field evaluate deep-point placement (urea supergranules) and slow-release (sulfur coated urea) N fertilizers in irrigated rice. These N sources were compared for performance with split application of prilled urea at 19 sites in Asia in wet season 1981.SCU or USG differed significantly in response curves from prilled urea at 12 of the 17 sites where N response was observed. Over these 17 sites, 22–25% less N as SCU or 29–31% less N as USG provided the same yield increment as the comparatively higher level of N as prilled urea.High profit N rates were derived for 5 sites. The optimal N levels for SCU or USG were less than for prilled urea. However, in one case for both test materials prilled urea was more profitable than SCU or USG. The marginal rates of return of using SCU or USG as opposed to OPU were calculated for the 11 sites where the response functions of the test materials differed significantly from prilled urea. In other than 2 sites for SCU the MRR exceeded 2.0 for 29 and 58 kg N ha–1, indicating the general profitability of these materials when compared to prilled urea.  相似文献   

8.
Nitrogen losses due to leaching, volatilization and denitrification result in low fertilizer efficiency. Slow-release N fertilizers are proposed to minimize these losses, and sulfur-coated urea (SCU) has been examined. A greenhouse study was conducted using two coarse textured: loamy sand and sandy loam soils from Al-Kharj, Saudi Arabia to compare sulfur-coated urea (SCU) with urea, ammonium nitrate (AN) and ammonium sulfate (AS) and to determine the effectiveness of single appliction of SCU over split application of soluble N sources. Tomato (Lycopersicon esculentum L.) and sorghum (Sorghum bicolor L.) were grown as indicator crops. Dry matter yields showed a significant increase with SCU fertilizers over other sources applied single or split, particularly in loamy sand soil. SCU-22 resulted in a consistent increase of dry matter yield and N-uptake compared to SCU-30 and SCU-40. The potential benefit of using SCU in coarse textured soils appers to be promising for increasing N fertilizer efficiency. Producing these slow release N fertilizers seems feasible if a coating step is added to the manufacturing process of urea produced from some fertilizer plants in Saudi Arabia.Contribution from the Regional Agriculture and Water Research Center (RAWRC), Ministry of Agriculture and Water, Riyadh, Saudi Arabia. Presented in Div. S-8, Am. Soc. Agron. Meeting, Atlanta, GA, November 1981.  相似文献   

9.
Rice is a very responsive crop to nitrogen, but the efficiency of the N-fertilizer is low. Greenhouse experiment has been conducted to evaluate several methods to improve fertilizer efficiency and reduce N-losses in rice fields. N-15 labelled urea was applied to 10 kg soils in pots, urea was applied alone, addition of two urease inhibitors N-(n-butyle) thiosphosphoric triamide (NBPT) and hydroquinone (HQ), with addition of nitrification inhibitor Dicyandimide (DCD), or with the combination of both inhibitors. The fertilizer was applied either broadcast on soil surface or at depth of 8 cm below the surface. At maturity, plants were separated into grain and straw, dried and weighted. Soil and plant samples were analyzed for total N and N-15 excess. Both fertilizer placement and inhibitor application significantly increased straw and grain yield, as well as N- uptake. Nitrogen derived from fertilizer (% Ndff) was more than doubled, when urea was applied deep and in combination with inhibitors. Total plant recovery of N-15 labelled urea ranged from 17% to 75% according to treatment. Regardless of inhibitors application, plant recovery was increased from 39% to 65% when urea was applied at depth of 8 cm. Approximately, 2/3 of the applied urea (64%) was lost, when urea was applied alone. Those losses were reduced down to 12% with deep placement and inhibitor application. The two management practices show significant effect on minimizing N-losses and increasing plant recovery.  相似文献   

10.
In experiments with transplanted rice (Oryza sativa L.) at the International Rice Research Institute, Philippines, two methods of split application of urea and ammonium sulfate were compared with deep, point placement (10 cm) of urea supergranules and broadcast application of a slow-release fertilizer sulfur-coated urea (SCU). Comparisons were made in the wet and dry seasons and were based on rice yield and N uptake. Urea- and ammonium-N concentrations and pH of the floodwater were measured to aid interpretation of the results.Split applications of urea were generally less efficient than ammonium sulfate. The split in which the initial fertilizer dose was broadcast and incorporated into the soil before transplanting was more effective than the split in which the fertilizer was broadcast directly into the floodwater 21 days after transplanting. Both split applications were inferior to the urea supergranules and SCU, in terms of both yield and N uptake efficiency; average apparent N recoveries ranged from 30% for the delayed split urea to 80% for the urea supergranule.Broadcast applications of urea and ammonium sulfate produced high floodwater concentrations of urea- and ammonium-N, which fell to zero within 4–5 days. Floodwater pH was as high as 9.3 and fluctuated diurnally due to heavy algal growth. Ammonia volatilization and algal immobilization of N in the floodwater were probably responsible for the poor efficiency of the split applications; the supergranules and SCU on the other hand produced low floodwater N concentrations and were efficiently used by the rice crop.  相似文献   

11.
Incorporation of urea into puddled rice soils is known to reduce ammoniacal-N buildup in floodwater and the subsequent loss of N as ammonia. Little is known, however, about seasonal and temperature effects on the effectiveness of basal urea incorporation in puddled soils. A field experiment was conducted in northern Vietnam on an Aquic Ustifluvent in the spring season (February to June) and summer season (July to November) to determine the effect of the presence of floodwater and method of fertilizer incorporation on floodwater ammoniacal-N, floodwater urea-N, andpNH3 following urea application. During the 4 d following basal urea application, floodwater temperature at 1400 h was 7 to 15°C higher in summer (July) than that in spring (February), and floodwater pH at 1400 h was 0.5 to 1.0 higher in summer than that in spring. ThepNH3 was much higher in summer than that in spring, suggesting a high potential for ammonia volatilization in summer. The movement of transplanters through the field did not reducepNH3, irrespective of floodwater depth (0 or 5 cm) and season. Harrowing and subsequent transplanter movement partially reducedpNH3 in the summer;pNH3 reduction, however, was greater when floodwater depth was 0 rather than 5 cm during harrowing and transplanting. This partial reduction ofpNH3 in summer did not result in a corresponding increase in rice yield, presumably because N losses were only slightly reduced and because yield was constrained by additional factors, such as the adverse climate. In spring, the removal of floodwater before urea application and incorporation increased grain yield by 0.2 Mg ha–1, even thoughpNH3 was consistently low and was not reduced by urea incorporation. This result suggests that water management and tillage during basal urea application may influence rice growth and yield in ways other than reduced N loss.  相似文献   

12.
In experiments with transplanted rice (Oryza sativa L.) at the Central Soil Salinity Research Institute, Karnal, India, two methods of application of granular urea, wholly as basal dose U(W) or in splits U(S) were compared with deep, point placement (8 cm) of urea supergranules and broadcast application of two slow-release sources, sulphur-coated urea (SCU) and lac-coated urea (LCU). Comparisons were made in wet season 1984 and 1985 on the basis of ammoniacal N concentration and pH of floodwater, ammonia volatilization, rice yield and N uptake.In 1984 the highest peak concentrations of ammoniacal N (AN) in the floodwater, > 12g m–3, and ammonia volatilization losses 54% of applied N were produced in U(W). Application of N in splits U(S) reduced peak AN levels 5g m–3 and losses to 45.1%. LCU was ineffective in reducing peak AN levels ( 7.5g m–3) or losses (43.6%). However SCU and USG were effective in reducing peak AN levels to < 2g m–3 and N losses to 16.9 and 3.4% respectively. Total ammonia volatilization losses as well as the initial rate of loss correlated very well with the peak levels (second day) of AN, NH3 (aq.) as well as equilibrium vapour pressure of NH3. Floodwater pH was between 9.5 and 10.0.Split application of granular urea was generally more efficient in terms of yield and N recovery (41.4%, average of two years) as compared to whole application (29.5%). LCU was ineffective in improving grain yields or N recovery (30.9%). SCU was ineffective in improving grain yields but improved N recovery to 57.9%., USG increased grain yields only in first year by 19% over U(S) and improved N uptake to 60.5%. A negative linear relationship was established between N uptake by rice at harvest and AN levels in floodwater two days after fertilization which can be used as an index to evaluate fertilizers.  相似文献   

13.
Field experiments were conducted from 1988 to 1991 or 1992 at two sites (Lacombe-Black Chernozem and Eckville-Gray Luvisol) in central Alberta, Canada to determine the effect of rate (0 to 300 kg N ha–1), source [urea and ammonium nitrate (AN)] and time (early fall, late fall, early winter, early spring and late spring) of N application on dry matter yield (DMY), protein yield (PY), protein concentration (PC), N-use efficiency (NUE), % N recovery (% NR) and nitrate-N (NO3–N) concentration in meadow bromegrass (Bromus bibersteinii Roem and Shult. cv. Regar). The DMY, PY and PC increased with increasing applied N, but the NUE and % NR decreased at high N rates. The increases in PY from fertilizer N were proportionately greater than DMY due to increase in PC at high N rates. Potentially toxic NO3–N levels (>2.3 g kg–1) were not found in the forage. Urea generally produced lower DMY, PY, PC, NUE and % NR than AN, regardless of time of application and cut. Early spring application had the highest and early winter application had the lowest DMY and PY. In conclusion, urea was less effective than AN as a forage fertilizer and early spring application was most effective.  相似文献   

14.
A field experiment was conducted in an Andosol in Tsukuba, Japan to study the effect of banded fertilizer applications or reduced rate of fertilizer N (20% less) on emissions of nitrous oxide (N2O) and nitric oxide (NO), and also crop yields of Chinese cabbage during the growing season in 2000. Six treatments were applied by randomized design with three replications, which were; no N fertilizer (CK); broadcast application of urea (BC); band application of urea (B); band application of urea at a rate 20% lower than B (BL); band application of controlled-release urea (CB) and band application of controlled-release urea at a rate 20% lower than CB (CBL). The results showed that reduced application rates, applied in bands, of both urea (BL) and controlled-release urea fertilizer (CBL) produced yields that were not significantly lower than yields from the full rate of broadcast urea (BC). The emissions of N2O and NO from the reduced fertilizer treatments (BL, CBL) were lower than that of normal fertilizer rates (B, CB). N2O and NO emissions from controlled-release urea applied in band mode (CB, CBL) were less than those from urea applied in band mode (B, BL). The total emissions of N2O and NO indicated that applying fertilizers in band mode mitigated NO emission from soils, but N2O emissions from banded urea (B) were no lower than from broadcast urea (BC).  相似文献   

15.
Two modified urea products (urea supergranules [USG] and sulfur-coated urea [SCU]) were compared with conventional urea and ammonium sulfate as sources of nitrogen (N), applied at 58 kg N ha–1 and 116 kg N ha–1, for lowland rice grown in an alkaline soil of low organic matter and light texture (Typic Ustipsamment) having a water percolation rate of 109 mm day–1. The SCU and USG were applied at transplanting, and the whole dose of nitrogen was15N-labeled; the SCU was prepared in the laboratory and was not completely representative of commercial SCU. The SCU was broadcast and incorporated, whereas the USG was point-placed at a depth of 7–8 cm. The urea and ammonium sulfate applications were split: two-thirds was broadcast and incorporated at transplanting, and one-third was broadcast at panicle initiation. All fertilizers except the last one-third of the urea and ammonium sulfate were labeled with15N so that a fertilizer-N balance at flowering and maturity stages of the crop could be constructed and the magnitude of N loss assessed.At all harvests and N rates, rice recovered more15N from SCU than from the other sources. At maturity, the crop recovered 38 to 42% of the15N from SCU and only 23 to 31% of the15N from the conventional fertilizers, urea and ammonium sulfate, whose recovery rates were not significantly different. In contrast, less than 9% of the USG-N was utilized. Fertilizer nitrogen uptake was directly related to the yield response from the different sources. Most of the fertilizer N was taken up by the time the plants were flowering although recovery did increase up to maturity in some treatments.Analysis of the soil plus roots revealed that less than 1% of the added15N was in the mineral form. Between 20 and 30% of the15N applied as urea, SCU, and ammonium sulfate was recovered in the soil plus roots, mainly in the 0–15 cm soil layer. Only 16% of the15N applied as USG was recovered in the soil, and this15N was distributed throughout the soil profile to a depth of 70 cm, which was the lowest depth of sampling.Calculations of the15N balance showed that 46 to 50% of the urea and ammonium sulfate was unaccounted for and considered lost from the system. Only 27 to 38% of the15N applied as SCU was not recovered at maturity, but 78% of the USG application was unaccounted for. The extensive losses and poor plant recovery of USG at this site are discussed in relation to the high percolation rate, which is atypical of many ricegrowing areas.  相似文献   

16.
The influence of different methods of N fertilizer application-sub-surface placement (SS) and broadcast application (BC) as a single basal dose of 40 kg N ha–1 of urea (U) and ammonium sulphate (AS)-on fresh weight (FW) and acetylene reduction activity (ARA) ofAzolla pinnata (Bangkok) and yield of rice was studied for consecutive three seasons. The FW, ARA and N yield ofAzolla were significantly superior with SS placement than with BC application. Of the two N sources, AS was superior to U in recording higher FW, ARA and N yield of Azolla irrespective of methods of N application. Crop yield and crop N uptake were higher with SS application alone and in combination with Azolla as compared to that of surface application of N fertilizers. The combined use of AS and Azolla recorded significantly higher crop yield and crop N uptake than that of U combined with Azolla, irrespective of methods of application.  相似文献   

17.
Field trials were carried out to study the fate of15N-labelled urea applied to summer maize and winter wheat in loess soils in Shaanxi Province, north-west China. In the maize experiment, nitrogen was applied at rates of 0 or 210 kg N ha–1, either as a surface application, mixed uniformly with the top 0.15 m of soil, or placed in holes 0.1 m deep adjacent to each plant and then covered with soil. In the wheat experiment, nitrogen was applied at rates of 0, 75 or 150 kg N ha–1, either to the surface, or incorporated by mixing with the top 0.15 m, or placed in a band at 0.15 m depth. Measurements were made of crop N uptake, residual fertilizer N and soil mineral N. The total above-ground dry matter yield of maize varied between 7.6 and 11.9 t ha–1. The crop recovery of fertilizer N following point placement was 25% of that applied, which was higher than that from the surface application (18%) or incorporation by mixing (18%). The total grain yield of wheat varied between 4.3 and 4.7 t ha–1. In the surface applications, the recovery of fertilizer-derived nitrogen (25%) was considerably lower than that from the mixing treatments and banded placements (33 and 36%). The fertilizer N application rate had a significant effect on grain and total dry matter yield, as well as on total N uptake and grain N contents. The main mechanism for loss of N appeared to be by ammonia volatilization, rather than leaching. High mineral N concentrations remained in the soil at harvest, following both crops, demonstrating a potential for significant reductions in N application rates without associated loss in yield.  相似文献   

18.
An initial broadcast application of sulfur-coated urea (SCU) fertilizer or 75% SCU — 25% ammonium nitrate (AN) provided no additional benefit over a similarly applied AN application in promoting vine growth or fruit yield of tomato (Lycopersicon esculentum Mill.). Additionally, AN alone promoted a significantly lower fruit pH. Irrigation effects did not interact with those of fertilizer treatments, but irrigation did significantly increase ripe yield 31% and vine dry weight 41%. The only effect of irrigation on fruit quality was a decrease in fruit soluble solids.  相似文献   

19.
The15N isotope was used to study the mode of action of individual nitrogen sources in a 30% urea:30% ammonium nitrate: 10% ammonium sulphate:30% filler (w/w) granular fertilizer for perennial ryegrass in a greenhouse pot experiment. The fertilizer consisted of two types of granules, one containing 80% urea and 20% filler and the second containing 48% ammonium nitrate (AN), 16% ammonium sulphate (AS) and 36% filler. In addition the effect of dolomite compared with silica as the filler was investigated on nitrogen recovery from the 30:30:10:30 formulation.Dolomite adversely affected the recovery of nitrate N from the system and evidence suggested that MgCO3 was the active component. Granules containing dolomite resulted in a lower dry-matter yield than those containing silica, however the difference was not significant as nitrate contributed only 20% of the N in the formulation. AN gave the greatest DM yield and urea the lowest with AS being intermediate. The15N budget in shoots, roots and soil indicated that only 65% of the N from urea was recovered at the end of the experiment compared with 86% for AN and 91% for AS. The dry-matter yield of the 30:30:10:30 formulation using silica as the filler was intermediate between urea and AN; however, the apparent N recovery was significantly higher than expected from the sum of the individual components. The use of15N labelling indicated that using separate granules for ammonium N and urea the recovery of urea was improved by 11% in the triple N mixture when both AN and AS were present in the second granule compared to the recovery on its own. The enhanced recovery of urea appeared to be a function of AN and AS acting together as neither source in double combination with urea had any effect on urea N recovery.Urea enhanced the recovery of nitrate N by 10% but decreased the recovery of AS by 6% (in the 30:30:10:30 formulation) in comparison with the single sources on their own. The results indicate that interactions can occur between N sources even when they are physically separated by being in different granules.  相似文献   

20.
A pot experiment was conducted in a greenhouse to assess the effect of rate and time of N application on yield and N uptake of wetland rice grown on a Rangsit acid sulfate soil (Sulfic Tropaquepts). Response of rice at N rates of 800, 1600 and 2400 mg N/pot (5 kg of soil) was compared between urea and ammonium sulfate when applied at two times: (i) full-rate basal at transplanting and (ii) one half at transplanting and one half at the PI stage. In addition, labelled15N sources were applied either at transplanting or at the PI stage to determine the nitrogen balance sheet in the soil/plant system.No significant difference in grain and straw yields between urea and ammonium sulfate at low rate was observed. At the higher N rates, urea produced higher yields than did ammonium sulfate regardless of timing. The highest yields were obtained when urea at the high N rate was applied either in a single dose or a split dose while lowest yields were observed particularly when ammonium sulfate at the same rate was applied. Split application of N fertilizer was shown to be no better than a single basal application. The occurrence of nutritional disorder, a symptom likely reflected by high concentration of Fe (II) in combination with soluble Al, was induced with high rate of ammonium sulfate.In terms of fertilizer N recovery by using15N-labelling, ammonium sulfate was more efficient than urea when both were applied at transplanting. In contrast, application at the PI stage resulted in higher utilization of urea than of ammonium sulfate. The recovery of labelled N in the soil was higher with urea than with ammonium sulfate when the two sources were applied at transplanting, while the opposite result was obtained when the same fertilizers were applied at the PI stage. The losses from urea and ammonium sulfate were not different when these fertilizers were applied at transplanting but loss from urea was higher than that from ammonium sulfate when both were applied at the PI stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号