首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A general and simple implementation of simultaneous multiparametric sensing in a single microchip is presented by using a capillary-assembled microchip (CAs-CHIP) integrated with the plural different reagent-release capillaries (RRCs), acting as various biochemical sensors. A novel "drop-and-sip" technique of fluid handling is performed with a microliter droplet of a model sample solution containing proteases (trypsin, chymotrypsin, thrombin, elastase) and divalent cations (Ca2+, Zn2+, Mg2+) that passes through the microchannel with the aid of a micropipette as a vacuum pump, concurrently filling each RRC via capillary force. To avert the evaporation of the nanoliter sample volume in each capillary, PDMS oil is dropped on the outlet hole of the CAs-CHIP exploiting the capillary force that results in spontaneous sealing of all the RRCs. In addition, this high-speed sample introduction alleviates the possibility of protein adsorption and capillary cross-contamination, allowing a reliable and multianalyte determination of a sample containing many different proteases and divalent cations by using the fluorescence image analysis. Presented results suggested the possible application of this microchip in the field of drug discovery and systems biology.  相似文献   

2.
A novel concept for assembling various chemical functions onto a single microfluidic device is proposed. The concept, called a capillary-assembled microchip, involves embedding chemically functionalized capillaries into a lattice microchannel network fabricated on poly(dimethylsiloxane) (PDMS). The network has the same channel dimensions as the outer dimensions of the capillaries. In this paper, we focus on square capillaries to be embedded into a PDMS microchannel network having a square cross section. The combination of hard glass square capillary and soft square PDMS channel allows successful fabrication of a microfluidic device without any solution leakage, and which can use diffusion-based two-solution mixing. Two different types of chemically modified capillaries, an ion-sensing capillary and a pH-sensing capillary, are prepared by coating a hydrophobic plasticized poly(vinyl chloride) membrane and a hydrophilic poly(ethyleneglycol) membrane containing functional molecules onto the inner surface of capillaries. Then, they are cut into appropriate lengths and arranged on a single microchip to prepare a dual-analyte sensing system. The concept proposed here offers advantages inherent to using a planar microfluidic device and of chemical functionality of immobilized molecules. Therefore, we expect to fabricate various types of chemically functionalized microfluidic devices soon.  相似文献   

3.
This paper is concerned with the mechanical compressive and tensile behaviour of polyethylene microcapillary monoliths (MCMs). MCMs are a voided polyethylene microstructure with two dimensional arrays of microcapillaries and where the polymer monolith is fabricated by the heat melding of microcapillary films (MCFs). MCFs are plastic films that resemble a tape but with an array of capillaries embedded within it. A reference monolith (MCM without capillaries) was also fabricated and tested under the same conditions as both low and high-voidage MCMs. The effect of the capillaries and voidage under compression of the polymer samples were evaluated taking as a standard, the reference monolith and a mathematical model was used to compare with the observed MCM capillaries response. Additionally the tensile mechanical drawing of low-voidage MCMs at different temperatures was carried out. The low-voidage MCM was mechanically drawn in the capillary direction with the objective of obtaining smaller diameter capillaries and the results show that with drawing, the initially circular section microcapillaries develop into a profile that follows the outer rectangular section of the monolith.  相似文献   

4.
A new optical metal ion sensor based on diffusion followed by an immobilizing reaction has been developed. The current sensor is based on a model that unifies two fundamental processes which a metal analyte undergoes when it is exposed to a porous, ligand-grafted monolith: (a) diffusion of metal ions to the binding sites and (b) metal-ligand (ML(n)) complexation. A slow diffusion of the metal ions is followed by their fast immobilizing reaction with the ligands in the monolith to give a complex. Inside the region where the ligands have been saturated, the diffusion of the metal ions reaches a steady state with a constant external metal ion concentration (C(0)). If the complex ML(n) could be observed spectroscopically, the absorbance of the product A(p) follows: A(p) = Kt(1/2), K = 2epsilon(p)(L(0)C(0)D)(1/2). D = diffusion constant of the metal ions inside the porous solid; L(0) = concentration of the ligands grafted in the monolith; and t = time. This equation is straightforward to use, and the K vs C(0)(1/2) plot provides the correlations with the concentrations (C(0)) of the metal ions. This is a rare optical sensor for quantitative metal ion analysis. The use of the model in a mesoporous sol-gel monolith containing grafted amine ligands for quantitative Cu(2+) sensing is demonstrated. This model may also be used in other chemical sensors that depend on diffusion of analytes followed by immobilizing reactions in porous sensors containing grafted/encapsulated functional groups/molecules.  相似文献   

5.
The effect of chromatographic conditions on the performance of chiral monolithic poly(O-[2-(methacryloyloxy)-ethylcarbamoyl]-10,11-dihydroqui nidine-co-ethylene dimethacrylate-co-2-hydroxyethyl methacrylate) columns in the capillary electrochromatography of enantiomers has been studied. The flow velocity was found to be proportional to the pore size of the monolith and both the pH and the composition of the mobile phase. The length of both open and monolithic segments of the capillary column was found to exert a substantial effect on the run times. The use of monoliths as short as 8.5 cm and the "short-end" injection technique enabled the separations to be achieved in approximately 5 min despite the high retentitivity of the quinidine selector. Very high column efficiencies of close to 250000 plates/m and good selectivities were achieved for the separations of numerous enantiomers using the chiral monolithic capillaries with the optimized chromatographic conditions.  相似文献   

6.
Enzymatic microreactors have been prepared in capillaries and on microfluidic chips by immobilizing trypsin on porous polymer monoliths consisting of 2-vinyl-4,4-dimethylazlactone, ethylene dimethacrylate, and acrylamide or 2-hydroxyethyl methacrylate. The azlactone functionalities react readily with amine and thiol groups of the enzyme to form stable covalent bonds. The optimized porous properties of the monoliths lead to very low back pressures enabling the use of simple mechanical pumping to carry out both the immobilization of the enzyme from its solution and the subsequent analyses of substrate solutions. The Michealis-Menten kinetic characteristics of the reactors were probed using a low molecular weight substrate: N-alpha-benzoyl-L-arginine ethyl ester. The effects of immobilization variables such as the concentration of trypsin in solution and percentage of azlactone functionalities in the monolith, as well as the effect of reaction time on the enzymatic activity, and of process variables such as substrate flow velocity and residence time in the reactor, were studied in detail. The proteolytic activity of the enzymatic microreactor on chip was demonstrated at different flow rates with the cleavage of fluorescently labeled casein used as a substrate. The excellent performance of the monolithic microreactor was also demonstrated with the digestion of myoglobin at the fast flow rate of 0.5 microL/min, which affords a residence time of only 11.7 s. The digest was then characterized using MALDI-TOF MS, and 102 out of 153 possible peptide fragments were identified giving a sequence coverage of 67%.  相似文献   

7.
Rapid microchip reversed-phase HPLC of peptides and proteins at pressure gradients of 12 bar/cm (180 psi/cm) has been performed using a microdevice that integrates subnanoliter on-chip injection and separation with a miniaturized fluorescence detector. Proteins and peptides were separated on a C18 side-chain porous polymer monolith defined by contact lithography, and injection was achieved via a pressure-switchable fluoropolymer valve defined using projection lithography. Preliminary separations of peptide standards and protein mixtures were performed in 40-200 s, and switching between samples with no detectible sample carryover has been performed. The injections and separations were reproducible; the relative standard deviation (RSD) for retention time was 0.03%, and peak area RSD was 3.8%. Sample volumes ranging from 220 to 800 pL could be linearly metered by controlling the pressure injection pulse duration with conventional timing and valving. The current prototype system shows the potential for rapid and autonomous HPLC separations with varying modalities and the potential for direct connection to mass spectrometers at nanospray flow rates.  相似文献   

8.
This paper introduces super absorbent polymer valves and colorimetric sensing reagents as enabling components of soft, skin‐mounted microfluidic devices designed to capture, store, and chemically analyze sweat released from eccrine glands. The valving technology enables robust means for guiding the flow of sweat from an inlet location into a collection of isolated reservoirs, in a well‐defined sequence. Analysis in these reservoirs involves a color responsive indicator of chloride concentration with a formulation tailored to offer stable operation with sensitivity optimized for the relevant physiological range. Evaluations on human subjects with comparisons against ex situ analysis illustrate the practical utility of these advances.  相似文献   

9.
Du Y  Wei H  Kang J  Yan J  Yin XB  Yang X  Wang E 《Analytical chemistry》2005,77(24):7993-7997
We report microchip capillary electrophoresis (CE) coupling to a solid-state electrochemiluminescence (ECL) detector. The solid-state ECL detector was fabricated by immobilizing tris(2,2'-bipyridyl)ruthenium(II) (TBR) into an Eastman AQ55D-silica-carbon nanotube composite thin film on an indium tin oxide (ITO) electrode. After being made by a photolithographic method, the surface of the ITO electrode was coated with a thin composite film through a micromolding in capillary (MIMIC) technique using a poly(dimethylsiloxane) (PDMS) microchannel with the same pattern as an ITO electrode. Then the TBR was immobilized via ion exchange by immersing the ITO electrode containing the thin film in TBR aqueous solution. The whole system was built by reversibly sealing the TBR-modified ITO electrode plate with a PDMS layer containing electrophoresis microchannels. The results indicated that the present solid-state ECL detector displayed good durability and stability in the microchip CE-ECL system. Proline was selected to perform the microchip device with a limit of detection of 2 microM (S/N=3) and a linear range from 25 to 1000 microM. Compared with the CE-ECL of TBR in aqueous solution, while the CE microchip with solid-state ECL detector system gave the same sensitivity of analysis, a much lower TBR consumption and a high integration of the whole system were obtained. The present system was also used for medicine analysis.  相似文献   

10.
A novel graphene-copper nanoparticle composite was prepared by the in situ chemical reduction of a mixture containing graphene oxide and copper(II) ions using potassium borohydride as a reductant. It was mixed with paraffin oil and packed into one end of a fused capillary to fabricate microdisc electrodes for sensing carbohydrates. The morphology and structure of the graphene-copper nanoparticle composite were investigated by scanning electron microscopy, X-ray diffraction, and Fourier transform-infrared spectroscopy. The results indicated that copper nanoparticles with an average diameter of 20.8 nm were successfully deposited on graphene nanosheets to form a well interconnected hybrid network. The analytical performance of these unique graphene-copper nanoparticle composite paste electrodes was demonstrated by sensing five carbohydrates in combination with cyclic voltammetry and capillary electrophoresis (CE). The advantages of the composite detectors include higher sensitivity, satisfactory stability, surface renewability, bulk modification, and low expense of fabrication. They should find applications in microchip CE, flowing-injection analysis, and other microfluidic analysis systems.  相似文献   

11.
Glass capillaries with a chemically sensitive coating on the inner surface are used as optical sensors for medical diagnostics. A capillary simultaneously serves as a sample compartment, a sensor element, and an inhomogeneous optical waveguide. Various detection schemes based on absorption, fluorescence intensity, or fluorescence lifetime are described. In absorption-based capillary waveguide optrodes the absorption in the sensor layer is analyte dependent; hence light transmission along the inhomogeneous waveguiding structure formed by the capillary wall and the sensing layer is a function of the analyte concentration. Similarly, in fluorescence-based capillary optrodes the fluorescence intensity or the fluorescence lifetime of an indicator dye fixed in the sensing layer is analyte dependent; thus the specific property of fluorescent light excited in the sensing layer and thereafter guided along the inhomogeneous waveguiding structure is a function of the analyte concentration. Both schemes are experimentally demonstrated, one with carbon dioxide as the analyte and the other one with oxygen. The device combines optical sensors with the standard glass capillaries usually applied to gather blood drops from fingertips, to yield a versatile diagnostic instrument, integrating the sample compartment, the optical sensor, and the light-collecting optics into a single piece. This ensures enhanced sensor performance as well as improved handling compared with other sensors.  相似文献   

12.
Microfluidic devices with a dual function containing both a solid-phase extractor and an enzymatic microreactor have been prepared, and their operation has been demonstrated. The devices were fabricated from a 25-mm-long porous poly(butyl methacrylate-co-ethylene dimethacrylate) monolith prepared within a 50-microm-i.d. capillary. This capillary with a pulled 9-12-microm needle tip was used as a nanoelectrospray emitter coupling the device to a mass spectrometer. Photografting with irradiation through a mask was then used to selectively functionalize a 20-mm-long portion of the monolith, introducing reactive poly(2-vinyl-4,4-dimethylazlactone) chains to enable the subsequent attachment of trypsin, thereby creating an enzymatic microreactor with high proteolytic activity. The other 5 mm of unmodified hydrophobic monolith served as micro solid-phase extractor (microSPE). The dual-function devices were used in two different flow directions; concentration of myoglobin that was absorbed from its dilute solution, followed by elution and digestion or digestion, followed by concentration. Operations in both directions afforded equal sequence coverage. Different volumes of myoglobin solution ranging from 2 to 20 microL were loaded on the device. Very high sequence coverages of almost 80% were achieved for the highest loading. Despite the very short length of the extractor unit, the device operated in the digest-solid-phase extraction direction also enabled the separation of peaks that mostly contained undigested protein and peptides.  相似文献   

13.
Autonomous microfluidic capillary system   总被引:7,自引:0,他引:7  
The transport of minute amounts of liquids using microfluidic systems has opened avenues for higher throughput and parallelization of miniaturized bio/chemical processes combined with a great economy of reagents. In this report, we present a microfluidic capillary system (CS) that autonomously transports aliquots of different liquids in sequence: liquids pipetted into the service port of the CS flow unidirectionally through the various sections of the CS, which comprises a 15-pL reaction chamber, into the capillary pump. A CS can thus be operated by simply delivering the different samples to its service port. The liquid transport concept presented here is advantageous because the pumping and valving functions are integrated into the device by means of capillary phenomena, and it therefore does not require any external power supply or control device. Thus, arrays of CSs can easily be formed by cloning a functional CS. Alternatively, the flow of liquids in CSs can also be interactively tuned if desired by (i) forcing the evaporating of liquid out of the capillary pumps and (ii) by contacting a secondary, removable capillary pump to the embedded ones. We illustrate the possibilities of CSs by conducting a surface immunoassay for a cardiac marker, within 25 min, on an area of 100 x 100 microm2, using 16 sequential filling steps.  相似文献   

14.
Characterization of the stimulated release of neuropeptides from brain slices and individual cultured neurons requires efficient collection of the releasate from relatively large volumes of physiological saline. Here, several collection approaches are optimized using particle-embedded monolithic capillaries (PEMCs) with poly(stearyl methacrylate-co-ethylene glycol dimethacrylate) monolith acting as a "glue". Two distinct extraction particles, with either pyrrolidone (PY) or ethylenediamine (EDA) as the functional group on polystyrene backbone, have been embedded into capillaries having an inner diameter of 250 μm. The capillaries act as collection devices for sampling neuropeptide release; the collection protocols are described, and the extraction efficiency of the probes are characterized. Specifically, the binding of angiotensin II from a peptide mixture onto the PY and EDA columns was 16 and 28 pmol, respectively, in a volume of 20 μL of saline. The peptides released from these columns have been characterized via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with low femtomole detection limits. When the PEMC columns were positioned in close proximity to individual neurons and 50 mM KCl was used as the secretagogue, peptides released from individual identified cultured neurons isolated from Aplysia californica were collected and characterized.  相似文献   

15.
This paper points out the importance of adequate valving in providing water distribution system reliability and the problems in assessing the reliability of a water distribution system, using a link-node representation commonly found in pipe network models. The paper suggests using an approach involving ‘segments’ of a distribution system that can be isolated with valves as the basic unit for assessing reliability, and illustrates the use of a graphical approach to analyze the adequacy of valving.  相似文献   

16.
Electroosmotic capillary flow with nonuniform zeta potential   总被引:1,自引:0,他引:1  
The present work is an analytical and experimental study of electroosmotic flow (EOF) in cylindrical capillaries with nonuniform wall surface charge (zeta-potential) distributions. In particular, this study investigates perturbations of electroosmotic flow in open capillaries that are due to induced pressure gradients resulting from axial variations in the wall zeta-potential. The experimental inquiry focuses on electroosmotic flow under a uniform applied field in capillaries with an EOF-suppressing polymer adsorbed onto various fractions of the total capillary length. This fractional EOF suppression was achieved by coupling capillaries with substantially different zeta-potentials. The resulting flow fields were imaged with a nonintrusive, caged-fluorescence imaging technique. Simple analytical models for the velocity field and rate of sample dispersion in capillaries with axial zeta-potential variations are presented. The resulting induced pressure gradients and the associated band-broadening effects are of particular importance to the performance of chemical and biochemical analysis systems such as capillary electrokinetic chromatography and capillary zone electrophoresis.  相似文献   

17.
An atmospheric pressure chemical ionization (APCI) microchip is presented for combining a gas chromatograph (GC) to a mass spectrometer (MS). The chip includes capillary insertion channel, stopper, vaporizer channel, nozzle and nebulizer gas inlet fabricated on the silicon wafer, and a platinum heater sputtered on a glass wafer. These two wafers are joined by anodic bonding creating a two-dimensional version of an APCI microchip. The sample from GC is directed via heated transfer line capillary to the vaporizer channel of the APCI chip. The etched nozzle forms narrow sample plume, which is ionized by an external corona discharge needle, and the ions are analyzed by a mass spectrometer. The GC-microchip APCI-MS combination provides an efficient method for qualitative and quantitative analysis. The spectra produced by microchip APCI show intensive protonated molecule and some fragmentation products as in classical chemical ionization for structure elucidation. In quantitative analysis the GC-microchip APCI-MS showed good linearity (r(2) = 0.9989) and repeatability (relative standard deviation 4.4%). The limits of detection with signal-to-noise ratio of three were between 0.5 and 2 micromol/L with MS mode using selected ion monitoring and 0.05 micromol/L with MS/MS using multiple reaction monitoring.  相似文献   

18.
Coupling low-flow analytical separation instrumentation such as capillary electrophoresis, capillary electrochromatography, nano-HPLC, and microfluidic-based devices with electrospray ionization mass spectrometry has yielded powerful analytical tools. However, conventional coupling methodologies such as nanospray suffer from limitations including poor conductive coating robustness, constant clogging, complicated fabrication processes, and incompatibility with large flow rate regimes. This study demonstrates that robust nanospray emitters can be fabricated through the formation and utilization of a porous polymer monolith (PPM) at the end of a fused-silica capillary. Stable electrosprays can be produced from capillaries (75-100-microm i.d.) at a variety of flow rates (50-1000 nL/min) without the need to taper the capillaries by etching or pulling. The PPM is photopatterned to be present only near the capillary exit aperture using conditions that generate pore sizes similar to those seen with nanospray tips. The porous nature of the PPM aids in developing a stable electrospray generating a single clearly visible Taylor cone at relatively high flow rates while at low flow rates (<100 nL/min) a mist, presumably from multiple small Taylor cones, develops. The hydrophobic nature of the PPM should limit problems with band broadening associated with droplet spreading at the capillary exit, while the multiple flow paths inherent in the PPM minimize clogging problems associated with conventional nanospray emitters. Total ion current traces for a constant infusion of standard PPG and cytochrome c solutions are very stable with deviations ranging from only 3 to 8%. The PPM-assisted electrospray produces mass spectra with excellent signal-to-noise ratios from only a few femtomoles of material.  相似文献   

19.
The separation of metallothionein (ML) isoforms using capillary electrophoresis (CE) has been improved by applying surface-modified capillaries, and the metal composition of MTs has been characterized by subsequent inductively coupled plasma sector field mass spectrometry (ICPSFMS). Nine MT complexes in a commercial preparation from rabbit liver were successfully separated on an anionic polymer-coated column, prepared by immobilizing poly(2-acrylamido-2-methyl-1-propanesulfonic acid) on the fused-silica surface via a linking agent. On uncoated capillaries or those coated dynamically with cationic materials, only three complexes could be separated. Online isotope dilution analysis combined with CE/ICPSFMS indicated the stoichiometric molar metal contents in the MT complexes.  相似文献   

20.
An integrated gel protein identification technology is developed and demonstrated for the effective ( approximately 90% recovery), rapid (less than 5 min), and sensitive identification (as low as 1 ng gel protein loading) of gel-resolved proteins using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). This integrated technology involves on-line combination of electronic protein transfer with nanoscale proteolytic digestion in a capillary platform, enabling electrokinetic-based protein extraction and stacking, real-time proteolytic cleavage of extracted proteins, and direct deposition of protein digests onto MALDI targets. By revisiting the yeast two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) in similar isoelectric point and molecular mass ranges as studied by Gygi and co-workers (Gygi, S. P.; Corthals, G. L.; Zhang, Y.; Rochon, Y.; Aebersold, R. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 9390-9395), we are additionally able to identify a large number of low abundance proteins with codon adaptation index (CAI) values of <0.2 and increase the proteome coverage to nearly 50%. The CAI value distribution for identified yeast proteins now more closely approximates that predicted for the entire yeast proteome. We further note that the current single-capillary methodology can be easily expanded to a multiplexed capillary platform as a ultrahigh throughput and greatly effective tool for linking 2-D PAGE with MS, particularly for the analysis of low-abundance proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号