共查询到1条相似文献,搜索用时 0 毫秒
1.
NR Murray GP Baumgardner DJ Burns AP Fields 《Canadian Metallurgical Quarterly》1993,268(21):15847-15853
The human erythroleukemia (K562) cell line undergoes megakaryocytic differentiation and cessation of proliferation when treated with phorbol myristate acetate (PMA). To investigate the role of individual protein kinase C (PKC) isotypes in these events, we have assessed PKC isotype expression during leukemic proliferation and PMA-induced differentiation. Immunoblot analysis using isotype-specific antibodies demonstrates that proliferating K562 cells express the alpha, beta II, and zeta PKC isotypes. PMA-induced differentiation and cytostasis lead to a decrease in beta II PKC and increases in alpha and zeta PKC levels. The role of the alpha and beta II PKC isotypes was further assessed in cells overexpressing these isotypes. K562 cells overexpressing human alpha PKC grew more slowly and were more sensitive to the cytostatic effects of PMA than control cells, whereas cells overexpressing beta II PKC were less sensitive to PMA. PMA-induced cytostasis is reversed upon removal of PMA. Resumption of proliferation is accompanied by reexpression of beta II PKC to near control levels, whereas alpha and zeta PKC levels remain elevated for several days after removal of PMA. Proliferation of PMA-withdrawn cells can be partially inhibited by antisense beta II PKC oligodeoxyribonucleotide. Growth inhibition is dose-dependent, specific for beta II PKC-directed antisense oligonucleotide, and associated with significant inhibition of beta II PKC levels indicating that beta II PKC is essential for K562 cell proliferation. Sodium butyrate, which unlike PMA induces megakaryocytic differentiation without cytostasis, causes increases in both alpha and beta II PKC levels. These data demonstrate that beta II PKC is required for K562 cell proliferation, whereas alpha PKC is involved in megakaryocytic differentiation. 相似文献