首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Textured hexagonal boron nitride (h-BN) matrix composite ceramics were prepared by hot pressing using 3Y2O3-5Al2O3 (mole ratio of 3:5) and 3Y2O3-5Al2O3-4MgO (mole ratio of 3:5:4) as liquid phase sintering additives, respectively. During the sintering process with liquid phase environments, platelike h-BN grains were rotated to be perpendicular to the sintering pressure, forming the preferred orientation with the c-axis parallel to the sintering pressure. Both h-BN matrix ceramic specimens show significant texture microstructures and anisotropic mechanical and thermal properties. The h-BN matrix ceramics prepared with 3Y2O3-5Al2O3-4MgO possess higher texture degree and better mechanical properties. While the anisotropy of thermal conductivities of that prepared with 3Y2O3-5Al2O3 is more significant. The phase compositions and degree of grain orientation are the key factors that affect their anisotropic properties.  相似文献   

2.
《Ceramics International》2020,46(8):11799-11810
The effect of Y2O3 addition on structure, mechanical properties and tribological properties of Al2O3-13 wt% TiO2 coating was investigated. The addition of 20 wt% Y2O3 resulted in better densification, stabilization of alpha (α) alumina phase and improvement in fracture toughness of Al2O3-13 wt% TiO2 coating. Abrasive wear tests were performed over a range of loads and sliding speeds. The stabilization of α alumina phase further increased with an increase in severity of wear test conditions, as noted from X-Ray Diffraction (XRD) and X-Ray Photoelectron Spectroscopy (XPS) analysis of worn coatings. Al2O3-13 wt% TiO2-20 wt% Y2O3 coating displayed lower friction coefficient and lower abrasive wear rate than Al2O3-13 wt% TiO2 coating, which was due to synergistic effect of α alumina phase and formation of magneli phase oxide of titanium; Ti2O3. Friction energy map was used to rationalize observed wear rates, to identify different regimes of wear and degradation modes of coatings.  相似文献   

3.
Portions of the quaternary system Na2O-CaO-Al2O3-Fe2O3 have been studied by the exploration of (1) the plane CaO-4CaO.Al2O3°Fe2O3-(Na2O + 3Al2O3) and (2) planes above the base system CaO.5CaO.3Al2O3–2CaO.Fe2O3 which contain successively increasing amounts of Na2O up to 6%. A portion of the quaternary system Na2O-CaO-Fe2O3-SiO2 has been studied by the exploration of a plane containing 5% of Na2O above the base system CaO-2CaO.SiO2-CaO.Fe2O3. In the pseudosystem CaO-4CaO.Al2O3.Fe2O3-(Na2O + 3A12O3) the compound Na2O.-8CaO.3A12O8 was found to exist as a primary phase, and the area in which the plane cuts the Na2O.8CaO.3A12O3 primary-phase volume was established. Three points on uni-variant curves were located. The iron phase (4CaO.A12O3.Fe2O3 solid solution) was observed to exist in a solid-solution series. In the system Na2O-CaO-5CaO.3Al2O3--2CaO.Fe2O3 it was found that the compound Na2O.8CaO.3Al2O3 appears at an Na2O concentration of 4.2%. As soda, however, is taken into solid solution by other phases, it was not feasible at this time to determine the invariant point for Na2O.8CaO.3A12O3, 3CaO.Al2O3, 5CaO.3A12O3, and 4CaO.Al2O3.-Fe2Oa solid solution. In the system Na2O-CaO-2CaO.SiO2-CaO.Fe2O3 no ternary compounds were observed up to the 5% limit of Na2O employed. A soda-containing phase occurred in solid solution with α-2CaO.SiO2, which may precipitate on cooling, forming inclusions in the ß-2CaO.SiO2, or enter into reaction with the glassy phase.  相似文献   

4.
Glasses in the 30La2O3-40TiO2-30Nb2O5 system are known to have excellent optical properties such as refractive indices over 2.25 and wide transmittance within the visible to mid-infrared (MIR) region. However, titanoniobate glasses also tend to crystallize easily, significantly limiting their applications in optical glasses due to processing challenges. Therefore, the 30La2O3-40TiO2-(30−x) Nb2O5-xAl2O3 (LTNA) glass system was successfully synthesized using a aerodynamic containerless technique, which improves glass thermal stability and expands the glass-forming region. The effects of Al2O3 on the structure, thermal, and optical properties of base composition glasses were investigated by XRD, DSC, NMR, Raman spectroscopy, and optical measurements. DSC results indicated that as the content of Al2O3 increased, the thermal stability of the glasses and glass-forming ability increased, as the 30La2O3-40TiO2-25Nb2O5-5Al2O3 (Nb-Al-5) glass obtained the highest ΔT value (103.5°C). Structural analysis indicates that the proportion of [AlO4] units increases gradually and participates in the glass network structure to increase connectivity, promoting more oxygen to become bridging oxygen and form [AlO4] tetrahedral linkages to [TiO5] and [NbO6] groups. The refractive index values of amorphous glasses remained above 2.1 upon Al2O3 substitution, and a transmittance exceeding 65% in the visible and mid-infrared range. The crystallization activation energies of 30La2O3-40TiO2-30Nb2O5 (Nb-Al-0) and Nb-Al-5 glasses were calculated to be 611.7 and 561.4 kJ/mol, and the Avrami parameters are 5.28 and 4.96, respectively. These results are useful to design new optical glass with good thermal stability, high refractive index and low wavelength dispersion for optical applications such as lenses, endoscopes, mini size lasers, and optical couplers.  相似文献   

5.
Cerium oxide doped with oxides of rare earth elements is a multifunctional material, a wide range of uses which is associated with its unique physicochemical properties. Phase diagrams of multicomponent systems are the physicochemical basis for the creation of new materials with improved characteristics.In this work, phase equilibria in ternary CeO2–La2O3–Dy2O3 and binary La2O3–Dy2O3 systems in the whole concentration range were studied. No new phases have been identified in these systems. An isothermal section of the phase diagram of the CeO2–La2O3–Dy2O3 system at a temperature of 1500 °С is constructed. No new phases have been detected in the system. It was found that in the studied ternary system solid solutions are formed on the basis of (F) modification of CeO2 with structure of fluorite type, monoclinic (B), cubic (C) and hexagonal (A) modifications of Ln2O3.In the La2O3–Dy2O3 binary system (1500–1100 °С) three types of solid solutions are formed: based on hexagonal modification A-La2O3, monoclinic modification B-Dy2O3 and cubic modification C-Dy2O3 separated by two-phase fields (A+B) and (B+C), respectively. The boundaries of the regions of homogeneity of solid solutions based on A-La2O3 are determined by compositions containing 35–40, 20–25, 15–20 mol% Dy2O3 at 1500, 1250, 1100 °C, respectively. From the obtained data it follows that the solubility of Dy2O3 in the hexagonal modification of lanthanum oxide is 39 mol% at 1500 °C, 23 mol. % at 1250 °C and 16 mol% at 1100 °C. The limits of existence of solid solutions based on monoclinic B-modification are determined by compositions containing 30–35, 65–60 (1250 °С), 35–40, 55–60 (1100 °С) 40–45, 70–75 (1500 °C) mol% Dy2O3.In the studied system, with a decrease in temperature from 1500° to 1100°C, there is a decrease in the solubility of La2O3 in the crystal lattice of cubic solid solutions of C-type from 16 to 10 mol%.  相似文献   

6.
The influence of heat and laser treatment during the formation of the ultradisperse structure of composite powders of the ZrO2 - Y2O3 - Al2O3 system is investigated. The parameters of short-range order of amorphous powders in the process of heat and laser treatment are determined. The effect of surface modification of ultradisperse powders on the structure formation and phase composition of the ceramics is established.Translated from Ogneupory, No. 11, pp. 12 – 14, November, 1994.  相似文献   

7.
The purpose of this research is to evaluate the bactericidal capacity of different Advanced Oxidation Treatments (AOTs) based on ozone: ozone, ozone/hydrogen peroxide and ozone/titanium dioxide on a wild strain of Clostridium perfringens, a fecal bacterial indicator in drinking water. The dose of ozone consumed ranges from 0.6 mg L?1 min?1 to 5.13 mg L?1 min?1 depending on the process and on the sample. In the treatments combined with O3, H2O2 dose utilized is 0.04 mM and TiO2 dose, 1 g L?1. In order to evaluate the influence of natural organic matter and suspension solids over the disinfection rate, treatments are performed with two types of water – natural water from Ebro River (Zaragoza, Spain) and NaCl solution 0.9%. To achieve 4 log units of inactivation, 3.6 mg O3 L?1 is necessary in O3 treatment, 4.25 mg O3 L?1 in O3/TiO2 system and 2.7 mg O3 L?1 in O3/H2O2 after processing the natural water. In NaCl solution, to get the same inactivation, 0.42 mg O3 L?1 is necessary in O3 treatment, 1.15 mg O3 L?1 in O3/TiO2 system and 0.06 mg O3 L?1 in O3/H2O2 process. Even though the three treatments studied have a high bactericidal activity due to the number of surviving bacteria decreases to non-detectable levels, O3/H2O2 is the most effective system for eliminating C. perfringens cells in a lower contact time, followed by O3 and finally O3/TiO2 system.  相似文献   

8.
《Ceramics International》2022,48(5):6124-6130
The behaviour of the promising glass sealant 54.4SiO2-13.7Na2O-1.7K2O-5.0CaO-12.4MgO-0.6Y2O3-11.3Al2O3-0.9B2O3 for solid oxide fuel cells (SOFCs) under SOFC operating conditions was studied. First, the kinetics of the crystallisation processes at the operating temperature (850 °C) was discussed (maximum exposure time of 1000 h), and the effect of crystallisation on the coefficient of thermal expansion (CTE) of the sealant was studied. Furthermore, the degradation processes at the interface of the glass sealant and functional SOFC materials (Crofer 22 APU, YSZ, and NiO(Ni)-YSZ) during exposure to 850 °C in oxidising and reducing atmospheres for 500 h were studied. The tests demonstrated good performance of the sealant studied and possibility of its application in SOFCs.  相似文献   

9.
Al2O3/Al2O3 ceramic matrix composites (CMC) are candidate materials for hot-gas leading components of gas turbines. Since Al2O3/Al2O3 CMC are prone to hot-corrosion in combustion environments, the development of environmental barrier coatings (EBC) is mandatory. Owing to its favorable chemical stability and thermal properties, Y2O3 is considered a candidate EBC material for Al2O3/Al2O3 CMC. Up to 1 mm thick Y2O3 coatings were deposited by means of air plasma spraying (APS) on Al2O3/Al2O3 CMC with a reaction-bonded Al2O3 bond-coat (RBAO). APS Y2O3 coatings exhibit a good adherence in the as-deposited state as well as upon isothermal annealing up to 1400 °C. Moreover, furnace cyclic testing performed at 1200 °C revealed an excellent durability. This is explained by the formation of a continuous, approximately 1 μm thick reaction zone at the APS Y2O3/RBAO interface. The reaction zone between Y2O3 and Al2O3 comprises three layers of thermodynamically stable yttrium-aluminates exhibiting strong bonding, respectively.  相似文献   

10.
The effect of NiO on the formation of phases in the ZrO2 - Al2O3 -Y2O3 - NiO system in heating of mixtures of the corresponding composition in a solar furnace is investigated. Some physicomechanical characteristics of ceramics based on them are described. Laboratory investigations showed that additions of NiO improve the operational properties of such ceramics strengthened due to the polymorphism of ZrO2.Translated from Ogneupory, No. 10, pp. 14 – 15, October, 1995.  相似文献   

11.
A critical evaluation and thermodynamic modeling study including key phase diagram experiments was performed to investigate the K2O-Al2O3 and K2O-MgO-Al2O3 systems. For the first time, potassium β- and β??-alumina solid solutions were described using the Compound Energy Formalism with accurate cation distributions in their sublattices. From the new experimental results, the stability of potassium β??-alumina was assured up to 1600?°C. A large discrepancy reported in the literature, the eutectic temperature between KAlO2 and β-alumina in the K2O-Al2O3 system, was resolved. A set of self-consistent Gibbs energy functions for all stable phases in the K2O-MgO-Al2O3 system was obtained. As a result, any phase diagram sections and thermodynamic properties of the K2O-MgO-Al2O3 system can be calculated from the optimized Gibbs energy functions. In particular, the cation distribution in the β- and β??-alumina solid solutions is calculated depending on the non-stoichiometry of solution and temperature.  相似文献   

12.
《Ceramics International》2022,48(2):1574-1588
In this study, individual Al2O3 and Cr2O3 coatings and Cr2O3-25, 50, 75 wt% Al2O3 composite coatings were applied on carbon steel by atmospheric plasma spraying method. Corrosion experiments were performed on as-sprayed and epoxy resin sealed coatings including potentiodynamic polarization, electrochemical impedance spectroscopy and long-term immersion in 3.5 wt% NaCl solution. Phase composition and microstructure of the coatings were investigated by x-ray diffraction, optical microscopy and scanning electron microscopy, before and after the corrosion experiment. The results showed that the Cr2O3 coating exhibited the best corrosion resistance, due to the densest microstructure and highest adhesion strength. The Cr2O3-25 wt% Al2O3 coating had the highest interconnected porosities and thus had the least corrosion resistance compared to other coatings. In general, the as-sprayed coatings induced a maximum increase of 3.93 times the polarization resistance (Rp) in the polarization experiment and a 3.5 times increase in the charge transfer resistance (Rct) in the EIS experiment, which was not significant. Stresses caused by increased volume of corrosion products in the coating-substrate interface resulted in the spallation of Cr2O3-25, 50 wt% Al2O3 coatings from the substrate over long-term of immersion. The adhesion strength of the coatings was a determining criterion for the long-term durability of the coatings. The sealing treatment resulted in a significant increase in Rp and Rct.  相似文献   

13.
A newly designed glass-ceramic system consisting of 15Bi2O3-15Nb2O5-40SiO2-30Al2O3 was successfully prepared, which was followed by its controlled crystallization at different heating temperatures. The effects of crystallization temperature on the microstructure, phase evolution and the energy storage behaviors of the novel material were systematically investigated. A maximum theoretical energy storage density of up to 15.3 J/cm3 was found in the samples heated at 800 °C. The polarization-electric (PE) hysteresis loops of this material exhibited very good linear character and high energy efficiency. In addition, an approximate value of 25 ns for discharged period T has been obtained, which demonstrated that most of the energy stored in dielectric was released over a very short time. The maximum powder density exceeds a high value of 90 MW/cc in a 390 kV/cm electric field. Therefore, the new developed Bi2O3-Nb2O5-SiO2-Al2O3 glass-ceramic can be used as an alternative, promising high-performance electrostatic capacitor material.  相似文献   

14.
A slight Nb2O5 co-doping in 11Sc2O3-89ZrO2 was earlier reported to stabilize the high-symmetry cubic phase completely and enhances the conductivity significantly. The present work looked at the temporal stability of conductivity in 1Nb2O5-10Sc2O3-89ZrO2 (1Nb10ScSZ) for the electrolyte application in solid oxide fuel cells. In-situ conductivity measurement was done using impedance spectroscopy at 650 °C in the air for 2000 h. A substantial conductivity loss (29%) was observed in the first 1000 h. Following which, conductivity remained relatively stable for the next 1000 h. Impedance analysis showed that the main contribution to the conductivity degradation was from grain conductivity. Phase analysis performed using XRD, TEM and Raman spectroscopy revealed that both the unaged and aged 1Nb10ScSZ samples consisted of metastable t″-phase. However, the extent of tetragonality was found to increase after ageing. The formation of low-symmetry phase was suggested to be the reason for the grain conductivity loss in 1Nb10ScSZ.  相似文献   

15.
The present study aimed to systematically study the transitions and consequential effects of antimony oxide (Sb2O3 or Sb2O5) additions over the properties of a SnO2-based varistor system. High energy ball-milling and conventional sintering were used to obtain the samples with the following molar composition: (98.95-X)% SnO2 - 1% Co3O4 - 0.05% Cr2O3 - X% Sb2O3/Sb2O5 where X = 0, 0.05, 0.1, 0.2 and 0.4 mol%. The thermal analysis suggested the in-situ formation of Sb2O4 at ~450 °C from Sb2O3 or Sb2O5 during the sintering of mixed oxides. SEM, XRD, and electrical analysis revealed similar results by using Sb2O3 or Sb2O5; the addition of 0.05 mol% antimony oxide provides the foremost properties. The transition equations from Sb2O3 or Sb2O5 to Sb2O4 demonstrate equivalency in the amount of Sb2O4 formed. That fact, besides the results obtained, were used to discuss a reasonable route for Sb3+ and Sb5+ incorporation within the SnO2 lattice.  相似文献   

16.
This study focuses on the effect of boron substitution on the crystallisation behaviour of an important bioceramic phase, tetracalcium phosphate (TTCP, Ca4P2O9), in the 4.5SiO2-3Al2O3-1.5P2O5-5CaO glass system. The influence of phase separation on the crystallisation activation energy as well as the microstructure is systematically analysed. The results indicate that increasing the extent of substitution of B for Al tends to lead to a decrease of the glass-transition temperature (Tg) and crystallisation temperature (Tp). When the substitution amount of B reaches 15 mol%, phase separation is observed. Weak phase separations during glass making can promote the nucleation of crystals due to heterogeneous nucleation with reduced nucleation activation energy. When 50 mol% B is substituted, serious phase separation is observed, with spherical-shaped TTCP phases appearing in the glass. The growth of striped-shaped TTCP crystals is largely suppressed even when a long holding time (1 h) at 900 °C is applied.  相似文献   

17.
Silicon carbide ceramics (SiC) are used in different applications in the engineering area due to the excellent properties, mainly in high temperatures. They are usually obtained by liquid-phase sintering enabling to form volatile products and, consequently, defects. The present work aims at studying the obtention of SiC ceramics by spontaneous infiltration using a eutectic composition of the Al2O3/Y2O3, AlN/Y2O3, Al2O3/Sm2O3, AlN/Sm2O3, Al2O3/RE2O3 and AlN/RE2O3 systems. RE2O3 is the concentrate of the rare-earth oxide obtained from Xenotime ore. Infiltration tests were carried out in argon atmosphere, graphite crucibles, in several temperatures near the melting point of each system, varying from 2.5 to 60 min. It was observed that Al2O3/Y2O3, Al2O3/Sm2O3, AlN/Sm2O3 and Al2O3/RE2O3 systems do not infiltrate appropriately and the AlN/Y2O3 and AlN/RE2O3 systems infiltrated spontaneously more than 20 mm; however, the first one presented a higher degree of infiltration, approximately 97%.  相似文献   

18.
《Ceramics International》2017,43(9):7073-7079
MgO-Al2O3-SiO2-TiO2-La2O3 glass-ceramics were investigated with respect to the phase compositions and the microstructure as well as the microwave dielectric properties. Indialite, magnesium aluminum titanate (MAT, Mg4Al2Ti9O25), perrierite, and spinel were the main crystal phases in the studied 1.8MgO-1.2Al2O3-2.8SiO2-1.4TiO2-xLa2O3 (x=0.4, 0.3, 0.2) glass-ceramics. Mg4Al2Ti9O25 was detected inside the indialite domain as well as at the boundary while no decomposition product (rutile) is found, proving that Mg4Al2Ti9O25 is fully stabilized. After heat-treatment at 1200 °C, the quality factor (Q×f) of the glass-ceramics increases from 27,500 to 40,000 GHz with decreasing La2O3 concentrations. This is caused by the formation of more indialite and MAT. Meanwhile, the temperature coefficient (τf) shifts positively from −95 to −65 ppm/°C because of the smaller perrierite concentration. However, τf is still too negative due to the absence of rutile that possesses a high positive τf. For the 1.3MgO-1.2Al2O3-2.8SiO2-1.4TiO2-0.2La2O3 glass-ceramic with lower MgO molar composition, the peaks assigned to rutile is found and the chemical formula of MAT changes to MgAl2Ti3O10 while spinel disappears. MgAl2Ti3O10, which distributes mainly at the boundary, decomposes partially, leading to the precipitation of rutile inside the indialite domain. Thus, the τf of the glass-ceramic could be adjusted to near 0 ppm/°C with εr=9.9 and Q×f=28,600 GHz, which are favorable properties for microwave dielectric applications.  相似文献   

19.
20.
In this study, highly transparent aluminate oxynitride (AlON) ceramics were prepared via the reactive sintering of Al2O3 and AlN powders using a Y2O3-MgAl2O4-H3BO3 ternary sintering additive. The ternary doping process resulted in the efficient preparation of transparent AlON ceramics with small grains and high transmittance as compared to the binary doping (Y2O3-MgAl2O4) process. The addition of 0.1 wt.% Y2O3-0.4 wt.% MgAl2O4-0.12 wt.% H3BO3 resulted in the formation of a 4-mm-thick AlON ceramic with high transmittance (81% at 600 nm) and low haze (3.46%). This is the best performance in terms of the thickness and transmittance reported for AlON transparent ceramics prepared by the reactive sintering method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号