首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 802 毫秒
1.
The mechanical properties of Ni(80-x) Cr(x) P(20) amorphous alloys (with x=0–40 at % in steps of 5 at %), produced by melt spinning, have been determined. The amorphous nature of the alloys was confirmed by X-ray diffraction. Differential scanning calorimetry showed that the crystallization temperatures increased with increasing chromium content. Microhardness measurements, made on both the wheel and free sides of the as-cast ribbons, revealed the presence of a gradient in hardness through the thickness of the specimens. Dynamic Young's modulus was measured with the piezoelectric ultrasonic composite oscillator technique and tensile fracture strengths were determined by uniaxial tensile testing of selected ribbons. Correlations were developed among the various properties to gain an insight into the structure/properties relations for these materials.  相似文献   

2.
Properties of engineering metallic alloys (e.g., fracture toughness, corrosion resistance) are often limited by the presence of primary intermetallic particles which form during conventional solidification. Rapid solidification brings about much more homogenous amorphous and/or nanocrystalline structure with reduced density of primary particles. Rapidly solidified thin ribbons obtained by melt spinning are usually considered as intrinsically homogenous. However, due to different cooling conditions at the wheel surface and on the side exposed to the ambient environment, structure of such ribbons may vary significantly across its thickness. The materials studied in this study were 30–40 μm thickness ribbons of nanocrystalline hyper- and hypo-eutectic Al–Si–Zr alloys produced by melt-spinning method. Transmission electron microscopy and high resolution scanning transmission electron microscopy were used to characterize the structure homogeneity across the ribbons. Thin foils for transmission observations were prepared by focused ion beam system. Microstructural observations confirmed nanocrystalline character of Al–Si–Zr alloys. However, these observations revealed inhomogeneity of the structure across the ribbon width.  相似文献   

3.
Rapidly solidified aluminium, AlMg (0 to 16.5 at % Mg) and AlSi (0 to 20.2 at % Si) alloys were produced by melt spinning. The AlMg ribbons were single-phase, whereas the AlSi ribbons were dual-phase. In the ribbons of both alloy systems the fineness of the microstructure increased with increasing alloying element content. The melt-spun ribbons were consolidated by hot extrusion. For comparison, conventionally cast alloys of corresponding compositions were extruded analogously. During the extrusion process in AlMg (16.5 at % Mg) and in the AlSi alloys precipitation occurred. The consolidation of the ribbons was markedly influenced by the oxide layer on the ribbon surfaces: in the AlSi consolidates a more intimate contact between the ribbons was apparent than in the aluminium and AlMg consolidates. In the extrudates of the conventionally cast alloys the grains and second-phase particles were much larger than in the consolidates. The observed dependence on alloy composition of hardness, ultimate tensile strength and elongation at fracture of both consolidated ribbons and extrudates of the conventionally cast alloys are discussed in terms of matrix grain size, solute content of the matrix, amount and size of second-phase particles and recrystallization behaviour. For all compositions of the alloys the Vickers hardness of the as-melt-spun ribbons was higher than that of the consolidated products, owing to recrystallization and precipitation provoked by the hot consolidation process. The ultimate tensile strength as well as the elongation at fracture of both consolidated ribbons and extruded conventionally cast alloys did not differ significantly for AlMg. However, due to a finer microstructure and a stronger inter-ribbon bonding, for AlSi alloys with a high silicon content the rapid solidification processing route did yield a product with significantly improved mechanical properties as compared with the extruded conventionally cast alloys.  相似文献   

4.
A new technique for continuous melt spinning of metal filaments in a glassy state has been developed. The technique consists of casting a stream of the melt from an orifice onto a convex inner surface of a rapidly rotating wheel. A number of glass forming alloys, such as transition-semimetals and early transition-transition metals, have been formed successfully into glassy ribbons. The advantages and limitations of this technique will be discussed.  相似文献   

5.
1.IotroductionCoolingratehasasignificanteffectonsolidifyingmicrostructureofAl-Sialloys,ithaJsbeenshownthatthemorphologyofeutecticsiliconchangesfromplatestofiberswhenthecoolingrateisincreased[1'2].Rapidsolidificationprocessingprovidesawaytogreatlyre-finemicrostructure.Inmelt-spinningprocess,alargecircumferentialvelocityoftherotatingwheelisac-companiedbyalargecoolingandsolidificationrate.SoasmallsizeofAl-richandSi-richphaseswasgainedinthespunribbonsofAlSialloysl3].Obviously,themicrostructure…  相似文献   

6.
The rapidly solidified ribbons of Co-7.5 and 11.8 at%Gd alloys were obtained by the melt spinning technique. The magnetic properties were measured and the effects of the wheel speed and the heat treatment on the coercivity were examined. SEM and EDS results show that the microstructures of melt-spun ribbons vary at different wheel speeds and after the heat treatment (1073 K, 30 min), and the soft magnetic properties of annealed ribbons are better than those of quenched ones. For Co-11.8 at%Gd ribbons, the maximum saturation magnetization reaches to 65.11 emu/g at the wheel speed of 20 m/s, while the minimum value of coercivity is 75.32 Oe. For Co-7.5 at%Gd ribbons, the minimum value of coercivity is 43 Oe in the annealed ribbons at 30 m/s and the maximum value of saturation magnetization is 106.93 emu/g from the annealed ribbons at 40 m/s. Theoretical analysis indicates that the exchange coupling length of (Co) and Co17Gd2 phases is 65.3 nm, and the exchange coupling coefficient of Co-7.5 and 11.8 at%Gd ribbons is in the range of 0.023–0.089. The exchange coupling effect in Co-11.8 at%Gd ribbons is stronger than that in Co-7.5 at%Gd ribbons.  相似文献   

7.
厚条带Mg-Al-Zn基合金的显微组织研究   总被引:2,自引:0,他引:2  
利用单辊低速旋铸方法制备出Mg-3%Al-i.2%Zn-0.2%Mn合金厚条带,估算了不同转速下条带的冷却速度,并重点研究了条带正面及其横截面的显微组织.结果表明:单辊低速旋铸条带(300转/分和500转/分)的冷却速度在104K/s和105K/s之间,厚条带的晶粒较铸态组织品粒细小.500转/分的镁合金条带的断面组织晶粒沿横截面分布比较均匀,并基本均为等轴晶区.300转/分条带的自由面出现部分柱状晶,而贴辊面及贴辊面和自由面之间的过度区都为等轴晶.  相似文献   

8.
The structure and soft magnetic properties of Fe68.5Si18.5B9Nb3Cu1 (at.%) alloy ribbons produced through planar flow melt spinning at different wheel speeds viz. 34, 17 and 12 m/s have been investigated using X-ray diffraction, differential scanning calorimetry, transmission electron microscopy, vibrating sample magnetometer and positron lifetime spectroscopy. Amorphous ribbons formed with different wheel speeds manifested different enthalpy and activation energy of crystallization. The volume fraction of nanocrystalline phase, saturation magnetization and permeability are found to increase whereas coercivity is found to decrease with increasing wheel speed on annealing. A detailed analysis of positron lifetime spectra obtained from the as-spun ribbons has been used to rationalize the variation in microstructure and magnetic properties. The presence of larger number of defects at higher wheel speed increases the volume fraction of nanocrystalline phase on annealing which improves the soft magnetic properties.  相似文献   

9.
Samples of Ni-Mo alloys ranging in composition from pure nickel to Ni-40 at % molybdenum were cast by the chill block melt spinning rapid solidification technique and examined by optical metallography, X-ray diffraction, and microhardness testing. Casting difficulties were encountered with lean alloys, but richer alloys spread more readily on the casting wheel. Alloy microstructures for 5 to 37.5 at % molybdenum ribbons were primarily cellular/dendritic; microstructure feature size decreased with increasing molybdenum content. Extended solubility of molybdenum in -nickel, with f c c lattice parameter increasing with composition to the 1.05 power, was observed up to 37.5 at % molybdenum. Substoichiometric Ni-Mo () nucleated on the wheel side of the ribbons of compositions 35, 37.5, and 40 at % molybdenum. The amount of partitionless phase thus formed increased with increasing molybdenum content and quench rate. This substoichiometric transformed readily to a fine structured - mixture.  相似文献   

10.
研究了溶体快淬三元La_2Fe_(14)B和Ce_2Fe_(14)B合金的相析出行为和磁性能,对不同快淬速度(10~50 m/s)和不同热处理温度下制备的样品进行了系统分析。结果表明,通过直接快淬,La_2Fe_(14)B合金中不能形成2∶14∶1硬磁相,而Ce_2Fe_(14)B合金可以获得2∶14∶1相。La_2Fe_(14)B合金在10m/s快淬时主要由La和α-Fe相组成,而Ce_2Fe_(14)B合金中2∶14∶1硬磁相在10m/s和20m/s快淬时析出。随着辊速的增加,非晶相逐渐增多并成为主相。在热处理过程中,La_2Fe_(14)B合金析出相以α-Fe和La相为主,并且高温下液态的富La相和α-Fe相可以共存;而Ce_2Fe_(14)B合金中先析出α-Fe,后析出2∶14∶1硬磁相,随后析出相长大。结果还表明,La_2Fe_(14)B比Ce_2Fe_(14)B有更高的非晶居里温度和更低的α-Fe相析出温度。由于硬磁相的析出,Ce_2Fe_(14)B合金可以获得较好的硬磁性能,包括一定的矫顽力。此研究对含La、Ce稀土永磁材料的生产具有一定的指导作用。  相似文献   

11.
Al-Cu alloys near the Al-Al2Cu equilibrium eutectic composition were rapidly solidified by the single-roller method. Two-zone structures were observed in transverse sections of Al-24.8, 30.0, 32.7, 33.2, 37.0 and 40.3 mass % Cu alloy ribbons, which were interpreted on the basis of the difference in cooling rates and of the temperature gradients between the chilled and free-surface sides of the ribbons. Non-equilibrium eutectic structures, cellular and irregular lamellar, were seen at the chilled side because the alloy liquids were directionally solidified with coupled eutectic growth. The coupled zone of the Al-Cu alloy expanded over the composition range 24.8–40.3 mass % Cu by rapid solidification. Dendritic structures were formed at the unchilled side of Al-24.8, 30.0, 37.0 and 40.3 mass % Cu alloys. Vickers hardness values at the chilled side differed from those at the unchilled side due to the difference in the microstructure.  相似文献   

12.
Abstract

Copper based Cu–RE alloys (where RE represents lanthanum, neodymium, or samarium) with alloying content up to 16 wt-% were prepared by chill block melt spinning into ribbons of thickness between 40 and 100 μm. The melt spun ribbons were heat treated isochronally for 2 h at 300, 400, 500, 600, 700, and 800°C, respectively. The melt spun and heat treated ribbons were tested for microhardness and resistivity and were characterised by optical and transmission electron microscopy (TEM) and X-ray diffractometry (XRD). Microstructures were of the typical zone B type for Cu–1RE and Cu–3RE ribbons and of the zone B/zone A type for Cu–5RE, Cu–8RE, and Cu–12RE ribbons. Only microstructures of the zone A type were found in Cu–15La ribbons. The metastable extended solid solubilities of the rare earth elements were evaluated by measurements of the lattice parameters of the supersaturated solid solutions and significant extension from the equilibrium solid solubility was found for all three alloys. The secondary phase was identified by TEM and XRD as Cu6RE for all ribbons except Cu–15La ribbons in which metastable Cu5La and Cu13La phases were also found. Observations using TEM and XRD also showed a reduction in the α-Cu grain size of the as spun ribbons with increasing alloying content, producing nanosized α-Cu grains on the chill side of the ribbons. Heat treatment of the ribbons at 400°C for 2 h produced no significant coarsening of α-Cu grains as the size of these grains was still in the nanometer region. Both α-Cu and Cu6RE grains coarsened as a result of heat treatment for 2 h at temperatures of 600°C and above for all the alloys.  相似文献   

13.
The harsh melt-spinning and annealing processes of high saturation magnetization nanocrystalline softmagnetic alloys are the biggest obstacles for their industrialization. Here, we proposed a novel strategy to enlarge the processing window by annealing the partially crystallized precursor ribbons via a heterostructured crystallization process. The heterostructured evolution of Fe84.75Si2B9P3C0.5Cu0.75(at.%)alloy ribbons with different spinning rate were studied in detail, to demonstrate the gradient nucleation and grain refinement mechanisms. The nanocrystalline alloys made with industrially acceptable spinning rate of 25-30 m/s and normal annealing process exhibit excellent magnetic properties and fine nanostructure. The small quenched-in crystals/clusters in the free surface of the low spinning rate ribbons will not grow to coarse grains, because of the competitive grain growth and shielding effect of metalloid elements rich interlayer with a high stability. Avoiding the precipitation of quenched-in coarse grains in precursor ribbons is thus a new criterion for the composition and process design, which is more convenient than the former one with respect to the homogenous crystallization mechanism, and enable us to produce high performance nanocrystalline soft-magnetic alloys. This strategy is also suitable for improving the compositional adjustability, impurity tolerance, and enlarging the window of melt temperature,which is an important reference for the future development of composition and process.  相似文献   

14.
Microstructures and deformation behaviour of Ti-45Ni-5Cu and Ti-46Ni-5Cu alloy ribbons prepared by melt spinning were investigated by transmission electron microscopy, thermal cycling tests under constant load and tensile tests. Spherical Ti2Ni particles coherent with the B2 parent phase were observed in the alloy ribbons when the melt spinning temperature was higher than 1773 K. Average size of Ti2Ni particles in the ribbons obtained at 1873 K was 8 nm, which was smaller than that (10 nm) in the ribbons obtained at 1773 K. Volume fraction of Ti2Ni phase in the ribbons obtained at 1873 K was 40%, which was larger than that (20%) in the ribbons obtained at 1773 K. The stress required at temperatures of Af + 10 K for the stress-induced martensitic transformation increased from 93 MPa to 229 MPa and apparent elastic modulus of the B2 parent phase increased from 56 GPa to 250 GPa with increasing the melt spinning temperature from 1673 K to 1873 K in Ti-45Ni-5Cu alloy ribbons. The critical stress for slip deformation of the ribbons increased by coherent Ti2Ni particles, and thus residual elongation did not occur even at 160 MPa, while considerable plastic deformation occurred at 60 MPa in the ribbons without Ti2Ni particles. Almost perfect superelastic recovery was found in the ribbons with coherent Ti2Ni particles, while only partial superelastic recovery was observed in the ribbons without coherent Ti2Ni particles.  相似文献   

15.
In this study, aluminium–copper ribbons of various compositions are prepared by melt-spinning and analysed by Auger electron spectroscopy. Rapidly solidified ribbons usually show a microcrystalline or featureless microstructure, especially in zones located near the surface solidified in direct contact with the rotating wheel. The composition of that surface of the ribbons was analysed by Auger electron spectroscopy. These measurements were performed in both scratched and also ion sputtered zones. After sputtering of the ribbon surface with argon ions, a surface enrichment in copper was observed. However scratching the surface of the ribbons produced a surface composition nearly identical to the bulk. The interest of rapidly solidified alloys in calibration applications is discussed.  相似文献   

16.
Immiscible alloys are attractive for their valuable physical and mechanical properties. In this paper, Al-ln immiscible alloy is prepared by melt spinning process and its morphological evolution is studied at various indium contents. The results show that the morphologies of the matrix phase depend on the indium content. Different morphologies lead to different distribution of the second phase particles. Due to a particular solidification mechanism of immiscible alloys, even under the melt spinning rapid solidification condition, it is still impossible to produce homogeneous Al-In hypomonotectic alloy ribbons. But for Al-In hypermonotectic alloys, there is almost no segregation of the second phase throughout the cross section of the ribbons.  相似文献   

17.
The investigation addresses the bilayer melt-spun ribbons in which the positively magnetostrictive layer Fe77.5Si7.5B15 is toward the free surface, while the negatively magnetostrictive layer of Co72.5Si12.5B15 forms the one in contact with the quench wheel. Scanning electron microscopy (SEM) elemental scan showed drastic changes in concentration profiles of Co, Fe and Si across the bilayer, indicating the efficacy of rapid quenching by melt spinning. Crystallization onsets, saturation magnetization and dilatation studies of the single-layered alloys distinctly reflected the properties of the bilayered ribbons. The thermal variation of coercivity below crystallization onset in the case of a bilayer revealed a softening mechanism due to reduction of stresses. Ribbon deflection studies showed interesting results.  相似文献   

18.
Experimental work on PFC performed with some amorphous alloys is reported. The subject of the investigation is the relationship between the main processing parameters and the resulting ribbon thickness. Calculations applying Bernoulli's equation reveal the relationship between the ribbon thickness and substrate velocity, ejection pressure, nozzle slot breadth and crucible wheel gap distance. Empirical data from numerous experiments are in good agreement with the calculations. Ribbons with smooth surfaces and precise cross-sections can be obtained by melt spinning with a small gap distance. The efficiency of a constrained melt puddle on the ribbon surface was exhibited by topographic measurements and high-speed motion pictures. Results of surface tension measurements have been used to explain the effect of the melt temperature on the ribbon thickness. Calculations and experimental data are a base for practical use of the PFC process in the production of ribbons with predetermined precise cross-section.  相似文献   

19.
Fe-78 wt% Ni ribbons were prepared by the melt spinning technique and the interactive contribution of the grain size and grain orientation on the magnetic properties was examined. Heat treatment at 673 K for 1 h followed by furnace cooling was performed to show the annealing impact. At three wheel speeds of 10, 20, and 30 m/s, the saturation magnetization nearly does not change. High wheel speed and heat treatment are inclined to promote the growth of <001> grains. Although the <001> orientation is not the easy axis of magnetization, the improvement of the texture in this direction makes the coercivity decrease, which counteracts the inverse effect of the grain size at high wheel speed. It indicates that for preparing soft magnetic ribbons, the interactive contribution of grain orientation variation and the grain size should be considered.  相似文献   

20.
Nd12.5Fe82B5.5 ribbons have been prepared by a melt spinning technique at a wheel speed ranging from 5 to 22 m/s. It was found that the wheel speed vR dramatically influences the microstructure and magnetic properties of the ribbons. At an optimized vR, a structure with single-phase Nd2Fe14B and an enhanced coupling between grains give rise to excellent magnetic properties. For example, the coercivity, remanence ratio, and maximum energy product of the best sample quenched at a wheel speed of 13 m/s are 1227.4 kA/m, 0.76, and 182.6 kJ/m3, respectively. In comparison with the samples from under- and over-quenched conditions and all the samples with annealing, the as-quenched sample fabricated at the optimized wheel speed has the best magnetic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号