首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pedro Benjumea  John Agudelo  Andrs Agudelo 《Fuel》2008,87(10-11):2069-2075
The basic properties of several palm oil biodiesel–diesel fuel blends were measured according to the corresponding ASTM standards. In order to predict these properties, mixing rules are evaluated as a function of the volume fraction of biodiesel in the blend. Kay’s mixing rule is used for predicting density, heating value, three different points of the distillation curve (T10, T50 and T90), cloud point and calculated cetane index, while an Arrhenius mixing rule is used for viscosity. The absolute average deviations (AAD) obtained were low, demonstrating the suitability of the used mixing rules. It was found that the calculated cetane index of palm oil biodiesel obtained using ASTM D4737 is in better agreement with the reported cetane number than the one corresponding to the ASTM D976. This result is most likely due to the fact that the former standard takes into account the particular characteristics of the distillation curve.  相似文献   

2.
麻疯树籽油生物柴油与0#柴油的混配性质   总被引:2,自引:0,他引:2  
目前,生物柴油主要用于与石化柴油制成混配物使用。混配物的性质对储运、使用产生重要影响。研究了两种来源的麻疯树籽油与甲醇进行酯交换反应制备得到的生物柴油与0#柴油混配物的密度、硫含量、运动黏度、冷滤点和闪点等性质。结果表明,混配物的密度随生物柴油体积分数增加呈线性增加;硫含量随生物柴油体积分数增加而线性减小;混配物的运动黏度可以根据生物柴油与石化柴油的密度、黏度及体积分数预测;混配物的闪点在生物柴油体积分数小于40%时随着生物柴油体积分数增加缓慢,在大于40%,特别是大于70%以后增加迅速。混配物的冷滤点相对麻疯树籽油生物柴油和0#柴油的冷滤点无明显变化。  相似文献   

3.
In this study, optical and thermal properties of normal grade and winter grade palm oil biodiesel were investigated. Surface Plasmon Resonance and Photopyroelectric technique were used to evaluate the samples. The dispersion curve and thermal diffusivity were obtained. Consequently, the variation of refractive index, as a function of wavelength in normal grade biodiesel is faster than winter grade palm oil biodiesel, and the thermal diffusivity of winter grade biodiesel is higher than the thermal diffusivity of normal grade biodiesel. This is attributed to the higher palmitic acid C(16:0) content in normal grade than in winter grade palm oil biodiesel.  相似文献   

4.
Blends of polybutadiene (BR) and styrene–butadiene–styrene triblock copolymer (SBS) have been prepared by a two‐roll mill. The morphologies of extruded samples from a capillary rheometer were observed by scanning electron microscopy (SEM). It is found that PS phase is dispersed in the BR phase. The glass transition temperature (Tg) of the blend has been examined by using differential scanning calorimetry (DSC). From the Tg behavior and the electron microscopy study, it is found that certain degree of miscibility between the polystyrene phase and the BR phase is observed. The rheological behavior of the blend has been investigated by a capillary rheometer. It is found that the viscosity of the blend increases with increased content of PS phase. The behavior is in accord with the expected behavior of filler effect. To predict the filler effect of PS phase on the BR–SBS blend, a modified model of Chen and Cheng is proposed to elucidate the rheological properties of the BR–SBS blends with different compositions. Chen and Cheng's micromechanical model derived in Part I of this series, which relates the macroscopic shear stress to the macroscopic shear rate of a rigid non‐Newtonian suspension when the direct contribution of Brownian force is completely neglected. The agreement between the theoretical predictions and the experimental results is satisfactory. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 39–46, 1999  相似文献   

5.
The transesterification reaction of soybean oil with methanol over kalsilite-based heterogeneous catalysts was investigated. The kalsilite was synthesized from potassium silicate, potassium hydroxide, and aluminum nitrate aqueous solutions by controlling the pH value at 13. After calcination in air at 1200°C, a very porous kalsilite (KAlSiO4) was obtained with surface pores ranging from 0.2 to 1.0 μm. However, this kalsilite had relatively low catalytic activity for the transesterification reaction. A biodiesel yield of 54.4% and a kinematic viscosity of 7.06 cSt were obtained at a high reaction temperature of 180°C in a batch reactor. The catalytic activity of kalsilite was significantly enhanced by introducing a small amount of lithium nitrate in the impregnation method. A biodiesel yield of 100% and a kinematic viscosity of 3.84 cSt were achieved at a temperature of only 120°C over this lithium modified catalyst (2.3 wt-% Li). The test of this lithium modified catalyst in pellet form in a laboratory-scale fixed-bed reactor showed that it maintained a stable catalytic performance with a biodiesel yield of 100% over the first 90 min.  相似文献   

6.
离子液体催化大豆油制备生物柴油   总被引:6,自引:1,他引:6  
制备了对水稳定性好、带—SO3H官能团的咪唑丙烷磺酸硫酸氢盐离子液体,并以其作为催化剂进行了大豆油酯交换反应制备生物柴油的研究。考察了离子液体的用量、醇与油物质的量比、反应温度和反应时间对酯交换反应的影响及离子液体的稳定性。实验结果表明,在n(甲醇)∶n(大豆油) =12∶1、反应温度120 ℃、反应时间8 h和催化剂用量为原料油质量的4.0%条件下,产物中脂肪酸甲酯收率可达96.5%,且离子液体的稳定性好,可循环使用。  相似文献   

7.
Polymer blends, having one component as an ionomer, can develop an interesting combination of mechanical properties. These properties give such blends some specific advantages as compared to non-ionic homo-polymers. Primary attention is given to blends involving an ionomer and the ionomer precursor polymer. In such blends, synergistic effects can occur in several of the mechanical properties, such as modulus, strength and fracture energy. The enhanced mechanical properties, which occur for relatively low concentrations of the ionomer in the blends, are well above values predicted by the rule of mixtures. This behavior is attributed to the presence in the ionomer component of a higher chain entanglement density and to good adhesion between the dispersed ionomer particles and the polymer matrix. Some discussion, with examples, is also given of other blends having an ionomer as one component and of blends in which a small amount of ionomer is added in order to enhance the miscibility of two otherwise incompatible polymers.  相似文献   

8.
生物柴油碳烟(BDS)在润滑油中团聚会引起润滑油黏度增加和磨损加剧。为了提高BDS的分散性从而改善其在润滑油中的润滑性能,采用旋转黏度计和高频往复试验机分别考察分散剂聚异丁烯丁二酰亚胺(PIBSI)和钙盐清净剂(高碱值合成磺酸钙HACS、烷基水杨酸钙ACS、硫化烷基酚钙SCA)对含BDS的液体石蜡(LP)的分散特性和摩擦学行为的影响,借助X射线光电子能谱、Zeta电位仪、3D激光扫描显微镜和扫描电子显微镜附带能谱探究BDS分散和摩擦磨损机制。结果表明,与单一添加相比,PIBSI与HACS复合添加于含BDS的LP中,BDS表面的-OH含量最高,在LP中团聚态BDS的平均粒径最小,对BDS的分散效果最好;添加9%(PIBSI+HACS)于含5% BDS的LP时,磨损体积从7.73×105 μm3降低到5.42×105μm3,降幅为29.9%;机理分析显示(PIBSI+HACS)通过氢键吸附在BDS表面,阻碍LP中BDS团聚;(PIBSI+HACS)对BDS的分散和抑制BDS在摩擦表面吸附作用,起到提升含BDS的LP的抗磨性能的效果。  相似文献   

9.
新型碱性离子液体催化蓖麻油制备生物柴油   总被引:10,自引:0,他引:10  
合成了新型碱性离子液体[Bmim]OH,将其应用于催化蓖麻油制备生物柴油,并与催化剂KOH、四丁基氢氧化铵进行比较,结果好于后两者。正交实验优化的碱性离子液体[Bmim]OH催化工艺条件为:催化剂用量为1%,醇油摩尔比为6∶1,反应温度为40℃,反应时间为60 min。在该优化条件下,甲酯混合物收率高于97%,蓖麻油基本上完全转化,其中高于95%转化为产物甲酯,催化剂[Bmim]OH重复使用6次没有明显消耗,催化性能稳定。  相似文献   

10.
叔戊醇体系酶促大豆油制备生物柴油   总被引:2,自引:0,他引:2  
叔戊醇作为反应介质,固定化脂肪酶Novozym 435催化大豆油与甲醇的转酯反应制备生物柴油。叔戊醇消除了反应底物甲醇及反应副产物甘油对酶活的负面影响。定量分析表明,叔戊醇与油脂的体积比为1,甲醇与油脂的摩尔比为3,2%脂肪酶,反应体系含水量2%,40 ℃、180 r/min条件下反应15 h,生物柴油得率可达97%。在最适条件下反应进行160批次,酶仍保持了较高的活性和良好的稳定性。  相似文献   

11.
The kinematic viscosity of biodiesel and its blends with diesel fuel   总被引:1,自引:0,他引:1  
As the use of biodiesel becomes more wide-spread, engine manufacturers have expressed concern about biodiesel’s higher viscosity. In particular, they are concerned that biodiesel may exhibit different viscosity-temperature characteristics that could result in higher fuel injection pressures at low engine operating temperatures. This study presents data for the kinematic viscosity of biodiesel and its blends with No. 1 and No. 2 diesel fuels at 75, 50, and 20% biodiesel, from close to their melting point to 100°C. The results indicate that while their viscosity is higher, biodiesel and its blends demonstrate temperature-dependent behavior similar to that of No. 1 and No. 2 diesel fuels. Equations of the same general form are shown to correlate viscosity data for both biodiesel and diesel fuel, and for their blends. A blending equation is presented that allows the kinematic viscosity to be calculated as a function of the biodiesel fraction.  相似文献   

12.
Standard biodiesel from soybean oil by a single chemical reaction   总被引:1,自引:1,他引:0  
Laboratory methods are described for producing standard biodiesel from low-acid-number vegetable oils in single-step reactions without distillation of the products. Either sodium hydroxide or methoxide is used as the catalyst. Biodiesel fuel is currently made from vegetable oils using basic catalysts. With this methodology, the oils must be reacted two or three times with methanol, in the presence of sodium methoxide, to make a product that meets the standard for the total chemically bound and unbound glycerol content. Previously it was thought that sodium hydroxide could never be used as the catalyst because it forms soap with the ester, which lowers the yield and makes product isolation difficult. Two of the described methods use sodium hydroxide as the catalyst and the other uses sodium methoxide. These methods rely on the use of oxolane as co-solvent to manipulate phase behavior during the reaction. Reactant molar ratios and base concentrations are also optimized to drive the reactions to the necessary degree of completion.  相似文献   

13.
In the present work, the transesterification reaction of soybean frying oil with methanol, in the presence of different heterogeneous catalysts (Mg MCM-41, Mg-Al Hydrotalcite, and K+ impregnated zirconia), using low frequency ultrasonication (24 KHz) and mechanical stirring (600 rpm) for the production of biodiesel fuel was studied. Selection of catalysts was based on a combination of porosity and surface basicity. Their characterization was carried out using X-ray diffraction, Nitrogen adsorption-desorption porosimetry and scanning electron microscopy (SEM) with energy dispersive spectra (EDS). The activities of the catalysts were related to their basic strength. Mg-Al hydrotalcite showed particularly the highest activity (conversion 97%). It is important to mention that the catalyst activity of ZrO2 in the transesterification reaction increased as the catalyst was enriched with more potassium cations becoming more basic. Use of ultrasonication significantly accelerated the transesterification reaction compared to the use of mechanical stirring (5 h versus 24 h).  相似文献   

14.
This paper describes an attractive method to make biodiesel from soybean soapstock (SS). A novel recovery technology of acid oil (AO) from SS has been developed with only sulfuric acid solution under the ambient temperature (25±2 °C). After drying, AO contained 50.0% FFA, 15.5% TAG, 6.9% DAG, 3.1% MAG, 0.8% water and other inert materials. The recovery yield of AO was about 97% (w/w) based on the total fatty acids of the SS. The acid oil could be directly converted into biodiesel at 95 °C in a pressurized reactor within 5 hours. Optimal esterification conditions were determined to be a weight ratio of 1 : 1.5 : 0.1 of AO/methanol/sulfuric acid. Higher reaction temperature helps to shorten the reaction time and requires less catalyst and methanol. Ester content of the biodiesel derived from AO through one-step acid catalyzed reaction is around 92%. After distillation, the purity of the biodiesel produced from AO is 97.6% which meets the Biodiesel Specification of Korea. The yield of purified biodiesel was 94% (w/w) based on the total fatty acids of the soapstock.  相似文献   

15.
采用共沉淀法制备了不同n(Mg)/n(Al)比的Mg-Al类水滑石,在不同温度下焙烧得到复合氧化物,作为大豆油与甲醇反应制备生物柴油的催化剂。结果表明,未焙烧Mg-Al类水滑石的催化活性较差,而n(Mg)/n(Al)=3的类水滑石在450℃焙烧时具有极高的催化活性。在反应温度65℃,醇/油15,催化剂用量为大豆油质量的2%,反应3 h,生物柴油产率可达97.4%。催化剂回收再用性能良好,重复使用3次,生物柴油收率仍在90%左右。  相似文献   

16.
Rheological and thermal properties of m-LLDPE blends with m-HDPE and LDPE   总被引:1,自引:0,他引:1  
The dynamic and steady state behavior of metallocene linear low density polyethylene (m-LLDPE) blended with metallocene high density polyethylene (m-HDPE) and with low density polyethylene (LDPE) were measured in parallel plate rheometer at 160, 180, and 200 °C. The composition dependence of zero shear viscosity η0, the characteristic relaxation time τ0 and the characteristic frequency ω0 of m-LLDPE/m-HDPE blends show a linear variation in the whole range of weight fraction, which indicates that m-LLDPE/m-HDPE blends are miscible blend. At the same time, m-HDPE showing a ‘dissident’ rheological behavior should possess a certain very low degree of LCB. Two calculation methods of LCB verify this point. In contrast, the composition dependence of zero shear viscosity η0 of m-LLDPE/LDPE blends shows a positive deviation from the log-additivity rule, which can be well fitted by using the immiscible blend equation of Utracki. The characteristic relaxation time τ0 and the characteristic frequency ω0 have a sharp variation with the small amounts of LDPE in the blends, which also indicates a phase separation in the system. The thermal properties of m-LLDPE/m-HDPE blends are very similar to a single-component system. However, m-LLDPE/LDPE blends are immiscible in both melt and crystal states. DSC results are consistent with the rheological properties of these two series of blends.  相似文献   

17.
BACKGROUND: Biodiesel is increasingly perceived as an important component of solutions to the important current issues of fossil fuel shortages and environmental pollution. Biocatalysis of soybean oils using soluble lipase offers an alternative approach to lipase‐catalyzed biodiesel production using immobilized enzyme or whole‐cell catalysis. The central composite design (CCD) of response surface methodology (RSM) was used here to evaluate the effects of enzyme concentration, temperature, molar ratio of methanol to oil and stirring rate on the yield of fatty methyl ester. RESULTS: Lipase NS81006 from a genetically modified Aspergillus oryzae was utilized as the catalyst for the transesterification of soybean oil for biodiesel production. The experimental data showed that enzyme concentration, molar ratio of methanol to oil and stirring rate had the most significant impact on the yield of fatty methyl ester; a quadratic polynomial equation was obtained for methyl ester yield by multiple regression analysis. The predicted biodiesel yield was 0.928 (w/w) under the optimal conditions and the subsequent verification experiments with biodiesel yield of 0.936 ± 0.014 (w/w) confirmed the validity of the predicted model. CONCLUSION: RSM and CCD were suitable techniques to optimize the transesterification of soybean oil for biodiesel production by soluble lipase NS81006. The related lipase NS81006 reuse stability, chemical or genetic modification, and transesterification mechanism should be taken into consideration. Copyright © 2007 Society of Chemical Industry  相似文献   

18.
In this paper, the compatibilization of polypropylene (PP)/high-density polyethylene (HDPE) blend was studied through morphological and interfacial tension analysis. Three types of compatibilizers were tested: ethylene-propylene-diene copolymer (EPDM), ethylene-vinylacetate copolymer (EVA) and styrene-ethylene/butylene-styrene triblock copolymer (SEBS). The morphology of the blends was studied by scanning electron microscopy. The interfacial tension between the components of the blends was evaluated using small amplitude oscillatory shear analysis. Emulsion curves relating the average radius of the dispersed phase and the interfacial tension to the compatibilizer concentration added to the blend were obtained. It was shown that EPDM was more efficient as an emulsifier for PP/HDPE blend than EVA or SEBS. The relative role of interfacial tension reduction and coalescence reduction to particle size reduction was also addressed. It was observed that the role of coalescence reduction is small, mainly for PP/HDPE (90/10) blends compatibilized by EPDM, EVA or SEBS. The results indicated that the role of coalescence reduction to particle size reduction is lower for blends for which interfacial tension between its components is low at compatibilizer saturation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号