首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The feasibility of using three different solid fuels in chemical-looping combustion (CLC) has been investigated using NiO as oxygen carrier. A laboratory fluidized-bed reactor system for solid fuel was used, simulating a chemical-looping combustion system by exposing the sample to alternating reducing and oxidizing conditions. In each reducing phase 0.2 g of fuel was added to the reactor containing 20 g oxygen carrier. The experiments were performed at 970 °C. Compared to previously published results with other oxygen carriers the reactivity of the used Ni-particles was considerably lower for the high-sulphur fuel and higher for the low-sulphur fuel. Much more unconverted CO was released and the fuel conversion was much slower for high-sulphur fuel such as petroleum coke, suggesting that the nickel-based oxygen carrier was deactivated by the presence of sulphur. The NiO particles also showed good reactivity with methane and a syngas mixture of 50% H2 and 50% CO. For all experiments the oxygen carrier showed good fluidizing properties without any signs of agglomeration.  相似文献   

2.
《Fuel》2004,83(13):1749-1757
In a chemical-looping combustion (CLC) process, gas (natural gas, syngas, etc.) is burnt in two reactors. In the first one, a metallic oxide that is used as oxygen source is reduced by the feeding gas to a lower oxidation state, being CO2 and steam the reaction products. In the second reactor, the reduced solid is regenerated with air to the fresh oxide, and the process can be repeated for many successive cycles. CO2 can be easily recovered from the outlet gas coming from the first reactor by simple steam condensation. Consequently, CLC is a clean process for the combustion of carbon containing fuels preventing the CO2 emissions to the atmosphere. The main drawback of the overall process is that the carriers are subjected to strong chemical and thermal stresses in every cycle and the performance and mechanical strength can decay down to unacceptable levels after enough number of cycles in use.In this paper the behaviour of CuO as an oxygen carrier for a CLC process has been analysed in a thermogravimetric analyser. The effects of carrier composition and preparation method used have been investigated to develop Cu-based carriers exhibiting high reduction and oxidation rates without substantial changes in the chemical, structural and mechanical properties for a high number of oxidation-reduction cycles. It has been observed that the carriers prepared by mechanical mixing or by coprecipitation showed an excellent chemical stability in multicycle tests in thermobalance, however, the mechanical properties of these carriers were highly degraded to unacceptable levels. On the other hand, the carriers prepared by impregnation exhibited excellent chemical stability without substantial decay of the mechanical strength in multicycle testing. These results suggest that copper based carriers prepared by impregnation are good candidates for CLC process.  相似文献   

3.
Different Ni-based oxygen carriers were prepared by dry impregnation using γ-Al2O3 as support. The reactivity, selectivity during methane combustion, attrition rate and agglomeration behavior of the oxygen carriers were measured and analyzed in a thermogravimetric analyzer and in a batch fluidized bed during multi-cycle reduction-oxidation tests.Ni-based oxygen carriers prepared on γ-Al2O3 showed low reactivity and low methane combustion selectivity to CO2 and H2O, because most of the impregnated NiO reacted to NiAl2O4. To avoid or to minimize the interaction of NiO with alumina some modifications of the support via thermal treatment or chemical deactivation with Mg or Ca oxides were analyzed. Thermal treatment of γ-Al2O3 at 1150 °C produced the phase transformation to α-Al2O3. Ni-based oxygen carriers prepared on α-Al2O3, MgAl2O4, or CaAl2O4 as support showed very high reactivity and high methane combustion selectivity to CO2 and H2O because the interaction between the NiO and the support was decreased. In addition, these oxygen carriers had very low attrition rates and did not show any agglomeration problems during operation in fluidized beds, and so, they seem to be suitable for the chemical-looping combustion process.  相似文献   

4.
The chemical-looping combustion (CLC) and chemical-looping with oxygen uncoupling (CLOU) processes are novel solutions for efficient combustion with direct separation of carbon dioxide. These processes use a metal oxide as an oxygen carrier to transfer oxygen from an air to a fuel reactor, where the fuel reacts with the solid oxygen carrier. When utilizing coal in CLC, the oxygen carrier particles could be affected through interaction with the ash-forming mineral matter found in coal, causing deactivation and/or agglomeration. In this work, possible interactions between minerals commonly encountered in coal and several promising oxygen carriers that are currently under investigation for their use in CLC are studied by both experiment and thermodynamic equilibrium calculations. Possible interaction was studied for both highly reducing and oxidizing conditions at 900 °C. Under highly reducing conditions pyrite was found to have by far the most deteriorating effect on the oxygen carrier particles, as the sulfur in the pyrite reacted with the oxygen carrier to form sulfides. Quartz and clay minerals were found to have a rather low influence on the oxygen carriers. Out of the oxygen carriers investigated, CuO/MgAl2O4 and the Mn3O4/ZrO2 oxygen carriers tended to be quite reactive towards mineral matter whereas ilmenite has been shown to be the most robust oxygen carrier. Although sulfur can clearly deactivate Ni, Cu and Mn based oxygen carriers under sub-stoichiometric conditions, when the fuel is converted fully to CO2 and H2O, sulfides are only expected for Ni-based oxygen carriers.  相似文献   

5.
The use of ilmenite as an oxygen carrier in chemical-looping combustion   总被引:2,自引:0,他引:2  
The feasibility of using ilmenite as oxygen carrier in chemical-looping combustion has been investigated. It was found that ilmenite is an attractive and inexpensive oxygen carrier for chemical-looping combustion. A laboratory fluidized-bed reactor system, simulating chemical-looping combustion by exposing the sample to alternating reducing and oxidizing conditions, was used to investigate the reactivity. During the reducing phase, 15 g of ilmenite with a particle size of 125–180 μm was exposed to a flow of 450 mLn/min of either methane or syngas (50% CO, 50% H2) and during the oxidizing phase to a flow of 1000 mLn/min of 5% O2 in nitrogen. The ilmenite particles showed no decrease in reactivity in the laboratory experiments after 37 cycles of oxidation and reduction. Equilibrium calculations indicate that the reduced ilmenite is in the form FeTiO3 and the oxidized carrier is in the form Fe2TiO5 + TiO2. The theoretical oxygen transfer capacity between these oxidation states is 5%. The same oxygen transfer capacity was obtained in the laboratory experiments with syngas. Equilibrium calculations indicate that ilmenite should be able to give high conversion of the gases with the equilibrium ratios CO/(CO2 + CO) and H2/(H2O + H2) of 0.0006 and 0.0004, respectively. Laboratory experiments suggest a similar ratio for CO. The equilibrium calculations give a reaction enthalpy of the overall oxidation that is 11% higher than for the oxidation of methane per kmol of oxygen. Thus, the reduction from Fe2TiO5 + TiO2 to FeTiO3 with methane is endothermic, but less endothermic compared to NiO/Ni and Fe2O3/Fe3O4, and almost similar to Mn3O4/MnO.  相似文献   

6.
Ni-based oxygen carriers (OC) with different NiO content were prepared by incipient wet impregnation, at ambient (AI), and hot conditions (HI) and by deposition-precipitation (DP) methods using γ-Al2O3 and α-Al2O3 as supports. The OC were characterized by BET, Hg porosimetry, mechanical strength, TPR, XRD and SEM/EDX techniques. Reactivity of the OC was measured in a thermogravimetric analyzer and methane combustion selectivity towards CO2 and H2O, attrition rate, and agglomeration behavior were analyzed in a batch fluidized bed reactor during multicycle reduction-oxidation tests.XRD and TPR analysis showed the presence of both free NiO and NiAl2O4 phases in most of the OC. The interaction of the NiO with the alumina during OC preparation formed NiAl2O4 that affected negatively to the OC reactivity and methane combustion selectivity towards CO2 and H2O during the reduction reaction. The NiO-alumina interaction was more affected by the support type than by the preparation method used. The NiO-alumina interaction was stronger in the OC prepared on γ-Al2O3.The OC were evaluated in the fluidized bed reactor with respect to the agglomeration process. OC prepared by the AI and HI methods with NiO contents up to 25 wt%, OC prepared by the DP method on γ-Al2O3 with NiO content lower than 30 wt%, and OC prepared by the DP method on α-Al2O3 with a NiO content lower than 26 wt% did not agglomerated. OC that agglomerated showed an external layer of NiO over the particles. It seems that the most important factor affecting to the formation of the external NiO layer on the OC, and so to the agglomeration process, was the metal content of the OC. The attrition rates of the OC prepared using γ-Al2O3 as support were higher than the ones prepared using α-Al2O3 as support, and in general the attrition rates of all the OC were low.The OC prepared by AI, HI or DP methods on α-Al2O3 as support had appropriated characteristics to be used in the chemical-looping combustion process.  相似文献   

7.
Paul Cho  Tobias Mattisson 《Fuel》2004,83(9):1215-1225
For combustion with CO2 capture, chemical-looping combustion (CLC) with inherent separation of CO2 is a promising technology. Two interconnected fluidized beds are used as reactors. In the fuel reactor, a gaseous fuel is oxidized by an oxygen carrier, e.g. metal oxide particles, producing carbon dioxide and water. The reduced oxygen carrier is then transported to the air reactor, where it is oxidized with air back to its original form before it is returned to the fuel reactor. The feasibility of using oxygen carrier based on oxides of iron, nickel, copper and manganese was investigated. Oxygen carrier particles were produced by freeze granulation. They were sintered at 1300 °C for 4 h and sieved to a size range of 125-180 μm. The reactivity of the oxygen carriers was evaluated in a laboratory fluidized bed reactor, simulating a CLC system by exposing the sample to alternating reducing and oxidizing conditions at 950 °C for all carriers except copper, which was tested at 850 °C. Oxygen carriers based on nickel, copper and iron showed high reactivity, enough to be feasible for a suggested CLC system. However, copper oxide particles agglomerated and may not be suitable as an oxygen carrier. Samples of the iron oxide with aluminium oxide showed signs of agglomeration. Nickel oxide showed the highest reduction rate, but displayed limited strength. The reactivity indicates a needed bed mass in the fuel reactor of about 80-330 kg/MWth and a needed recirculation flow of oxygen carrier of 4-8 kg/s, MWth.  相似文献   

8.
Behavior of ilmenite as oxygen carrier in chemical-looping combustion   总被引:1,自引:0,他引:1  
For a future scenery where will exist limitation for CO2 emissions, chemical-looping combustion (CLC) has been identified as a promising technology to reduce the cost related to CO2 capture from power plants. In CLC a solid oxygen-carrier transfers oxygen from the air to the fuel in a cyclic manner, avoiding direct contact between them. CO2 is inherently obtained in a separate stream. For this process the oxygen-carrier circulates between two interconnected fluidized-bed reactors. To adapt CLC for solid fuels the oxygen-carrier reacts with the gas proceeding from the solid fuel gasification, which is carried out right in the fuel-reactor. Ilmenite, a natural mineral composed of FeTiO3, is a low cost and promising material for its use on a large scale in CLC.The aim of this study is to analyze the behavior of ilmenite as oxygen-carrier in CLC. Particular attention was put on the variation of chemical and physical characteristics of ilmenite particles during consecutive redox cycles in a batch fluidized-bed reactor using CH4, H2 and CO as reducing gases. Reaction with H2 was faster than with CO, and near full H2 conversion was obtained in the fluidized-bed. Lower reactivity was found for CH4. Ilmenite increased its reactivity with the number of cycles, especially for CH4. The structural changes of ilmenite, as well as the variations in its behavior with a high number of cycles were also evaluated with a 100 cycle test using a CO + H2 syngas mixture. Tests with different H2:CO ratios were also made in order to see the reciprocal influence of both reducing gases and it turned out that the reaction rate is the sum of the individual reaction rates of H2 and CO. The oxidation reaction of ilmenite was also investigated. An activation process for the oxidation reaction was observed and two steps for the reaction development were differenced. The oxidation reaction was fast and complete oxidation could be reached after every cycle. Low attrition values were found and no defluidization was observed during fluidized-bed operation. During activation process, the porosity of particles increased from low porosity values up to values of 27.5%. The appearance of an external shell in the particle was observed, which is Fe enriched. The segregation of Fe from TiO2 causes that the oxygen transport capacity, ROC, decreases from the initial ROC = 4.0% to 2.1% after 100 redox cycles.  相似文献   

9.
Chemical-looping technologies have obtained widespread recognition as power or hydrogen production units with inherent carbon capture in a future scenario where CO2 capture and storage (CCS) is reality. In this paper three different techniques are described; chemical-looping combustion and two categories of chemical-looping reforming. The three techniques are all based on oxygen carriers that are circulating between an air- and a fuel reactor, providing the fuel with undiluted oxygen. Two different oxygen carriers; NiO/NiAl2O4 (40/60 wt/wt) and NiO/MgAl2O4 (60/40 wt/wt) are compared. Both continuous and pulse experiments were performed in a batch laboratory fluidized bed working at 950 °C using methane as fuel. It was found that pulse experiments offer advantages in comparison to continuous experiments, particularly when evaluating suitable particles for autothermal chemical-looping reforming. Firstly, smaller conversion ranges can be investigated in more detail, and secondly, the onset and extent of carbon formation can be determined more accurately. Of the two oxygen carriers, NiO/MgAl2O4 offers several advantages at elevated temperatures, i.e. higher methane conversion, higher selectivity to reforming and lesser tendency for carbon formation.  相似文献   

10.
The reactivity of a Ni-based oxygen carrier prepared by hot incipient wetness impregnation (HIWI) on α-Al2O3 with a NiO content of 18 wt% was studied in this work. Pulse experiments with the reduction period divided into 4-s pulses were performed in a fluidized bed reactor at 1223 K using CH4 as fuel. The number of pulses was between 2 and 12. Information about the gaseous product distribution and secondary reactions during the reduction was obtained. In addition to the direct reaction of the combustible gas with the oxygen carrier, CH4 steam reforming also had a significant role in the process, forming H2 and CO. This reaction was catalyzed by metallic Ni in the oxygen carrier and H2 and CO acted as intermediate products of the combustion. No evidence of carbon deposition was found in any case. Redox cycles were also carried out in a thermogravimetric analyzer (TGA) with H2 as fuel. Both tests showed that there was a relation between the solid conversion reached during the reduction and the relative amount of NiO and NiAl2O4 in the oxygen carrier. When solid conversion increased, the NiO content also increased, and consequently NiAl2O4 decreased. Approximately 20% of the reduced nickel was oxidized to NiAl2O4, regardless ΔXs. NiAl2O4 was also an active compound for the combustion reaction, but with lower reactivity than NiO. Further, the consequences of these results with respect to the design of a CLC system were investigated. When formation of NiAl2O4 occurred, the average reactivity in the fuel reactor decreased. Therefore, the presence of both NiO and NiAl2O4 phases must be considered for the design of a CLC facility.  相似文献   

11.
A. Abad  T. Mattisson  A. Lyngfelt  M. Rydén 《Fuel》2006,85(9):1174-1185
Chemical-looping combustion (CLC) is a method for the combustion of fuel gas with inherent separation of carbon dioxide. This technique involves the use of two interconnected reactors. A solid oxygen carrier reacts with the oxygen in air in the air reactor and is then transferred to the fuel reactor, where the fuel gas is oxidized to carbon dioxide and water by the oxygen carrier. Fuel gas and air are never mixed and pure CO2 can easily be obtained from the flue gas exit. The oxygen carrier is recycled between both reactors in a regenerative process. This paper presents the results from a continuously operating laboratory CLC unit, consisting of two interconnected fluidized beds. The feasibility of the use of a manganese-based oxygen carrier supported on magnesium stabilized zirconia was tested in this work. Natural gas or syngas was used as fuel in the fuel reactor. Fuel flow and air flow was varied, the thermal power was between 100 and 300 W, and the air ratio was between 1.1 and 5.0. Tests were performed at four temperatures: 1073, 1123, 1173 and 1223 K. The prototype was successfully operated at all conditions with no signs of agglomeration or deactivation of the oxygen carrier. The same particles were used during 70 h of combustion and the mass loss was 0.038% per hour, although the main quantity was lost in the first hour of operation. In the combustion tests with natural gas, methane was detected in the exit flue gases, while CO and H2 were maintained at low concentrations. Higher temperature or lower fuel flows increases the combustion efficiency, which ranged from 0.88 to 0.99. On the other hand, the combustion of syngas was complete for all experimental conditions, with no CO or H2 present in the gas from the fuel reactor.  相似文献   

12.
The kinetics of reduction with methane and oxidation with oxygen of Mn3O4 supported on Mg-ZrO2 prepared by freeze granulation has been investigated. The reactivity experiments were performed in a thermogravimetric analyzer (TGA) using different reacting gas concentrations and temperatures in the range of 1073-1223 K. The oxygen carrier particles showed high reactivity during both reduction and oxidation at all investigated temperatures. An empirical reaction model, which assumes a linear relation between time and conversion, was used to determine the kinetic parameters for reduction and oxidation, with chemical reaction being the main resistance to the reaction. The order of reaction found was 1 with respect to CH4 and 0.65 with respect to O2. The activation energy for the reduction reaction was 119 and for the oxidation reaction. The reactivity data and kinetic parameters were used to estimate the solid inventory in the air and fuel reactor of a CLC system. The optimum solid inventory obtained was at a value of ΔXs=0.4. At these conditions, the recirculation rate of oxygen carrier between air and fuel reactor was per MW of fuel, which could be accomplished in an industrial reactor. The high reactivity of the Mn3O4/Mg-ZrO2 with both methane and oxygen showed that this is a very promising oxygen carrier for CLC.  相似文献   

13.
Chemical-looping combustion has emerged as a promising alternative technology, intrinsically integrating CO2 capture in power production. A novel reactor concept based on dynamically operated packed beds has been proposed [Noorman, S., van Sint Annaland, M., Kuipers, J.A.M., 2007. Packed bed reactor technology for chemical-looping combustion. Ind. Eng. Chem. Res. 46, 4212-4220] and in this work, packed bed chemical-looping combustion was investigated experimentally to provide an experimental proof-of-principle. Using information obtained from both the reduction and oxidation cycles, the measured maximum temperature rise and front velocities in the packed bed during the oxidation cycle corresponded very well with analytical expressions describing the system, especially when the contribution of the formation of carbon during the reduction cycle was taken into account.  相似文献   

14.
Chemical-looping combustion, CLC, is a combustion concept with inherent separation of CO2. The fuel and combustion air are kept apart by using an oxygen carrier consisting of metal oxide. The oxygen carriers used in this study were prepared from commercially available raw materials by spray-drying. The aim of the study was to subject the particles to long-term operation (>1000 h) with fuel and study changes in particles, with respect to reactivity and physical characteristics. The experiments were carried out in a 10-kW chemical-looping combustor operating with natural gas as fuel. 1016 h of fuel operation were achieved. The first 405 h were accomplished using a single batch of NiO/NiAl2O4-particles. The last 611 h were achieved using a 50/50mass-mixture of (i) particles used for 405 h, and (ii) a second batch of particles similar in composition to the first batch, but with an MgO additive. Thus, at the conclusion of the test series, approximately half of the particles in the reactor system had been subjected to >1000 h of chemical-looping combustion. The reason for mixing the two batches was to improve the fuel conversion. Fuel conversion was better with the mixture of the two oxygen carriers than it was using only the batch of NiO/NiAl2O4-particles. The CO fraction was slightly above the equilibrium fraction at all temperatures. Using the oxygen carrier mixture, the methane fraction was typically 0.4-1% and the combustion efficiency was around 98%. The loss of fines decreased slowly throughout the test period, although the largest decrease was seen during the first 100 h. An estimated particle lifetime of 33 000 h was calculated from the loss of fines. No decrease in reactivity was seen during the test period.  相似文献   

15.
In chemical-looping combustion (CLC) a gaseous fuel is burnt with inherent separation of the greenhouse gas carbon dioxide. The oxygen is transported from the combustion air to the fuel by means of metal oxide particles acting as oxygen carriers. A CLC system can be designed similar to a circulating fluidized bed, but with the addition of a bubbling fluidized bed on the return side. Thus, the system consists of a riser (fast fluidized bed) acting as the air reactor. This is connected to a cyclone, where the particles and the gas from the air reactor are separated. The particles fall down into a second fluidized bed, the fuel reactor, and are via a fluidized pot-seal transported back into the riser. The gas leaving the air reactor consists of nitrogen and unreacted oxygen, while the reaction products, carbon dioxide and water, come out from the fuel reactor. The water can easily be condensed and removed, and the remaining carbon dioxide can be liquefied for subsequent sequestration.The gas leakage between the reactors must be minimized to prevent the carbon dioxide from being diluted with nitrogen, or to prevent carbon dioxide from leaking to the air reactor decreasing the efficiency of carbon dioxide capture. In this system, the possible gas leakages are: (i) from the fuel reactor to the cyclone and to the pot-seal, (ii) from the cyclone down to the fuel reactor, (iii) from the pot-seal to the fuel reactor. These gas leakages were investigated in a scaled cold model. A typical leakage from the fuel reactor was 2%, i.e. a CO2 capture efficiency of 98%. No leakage was detected from the cyclone to the fuel reactor. Thus, all product gas from the air reactor leaves the system from the cyclone. A typical leakage from the pot-seal into the fuel reactor was 6%, which corresponds to 0.3% of the total air added to the system, and would give a dilution of the CO2 produced by approximately 6% air. However, this gas leakage can be avoided by using steam, instead of air, to fluidize the whole, or part of, the pot-seal. The disadvantages of diluting the CO2 are likely to motivate the use of steam.  相似文献   

16.
Chemical-looping combustion with oxygen uncoupling (CLOU) is a method for combustion of solid and gaseous fossil fuels, which enables easy separation of carbon dioxide from the gaseous product mixture. In contrast to the related chemical-looping combustion (CLC) technology where gaseous or gasified fuels react directly with oxygen carriers, CLOU processes require oxygen carrier materials to be able to release oxygen in the fuel reactor and to regenerate by re-oxidation in oxygen-rich atmosphere in the air reactor at elevated temperature. Oxygen uncoupling properties and reactivities for methane combustion of 12 oxygen carrier particles, produced from mixtures of manganese and magnesium oxides with optional addition of titanium dioxide or calcium hydroxide, are investigated in a quartz batch reactor at 810 °C, 850 °C, 900 °C and 950 °C. All investigated oxygen carriers have oxygen release characteristics. The addition of calcium hydroxide facilitates oxygen release and combustion of methane, whereas addition of titanium dioxide does not have a pronounced effect on either oxygen uncoupling or reactivity of the oxygen carrier. In general, particles with greater extent of oxygen release have superior methane combustion properties.  相似文献   

17.
Kinetic data of a promising oxygen carrier of NiO/NiAl2O4 have been established from experiments in a small fluidized bed batch reactor using methane. The particles were prepared by spray-drying using commercially available raw material and selected as the best candidates from an earlier screening study. The particles clearly showed high reactivity, with a maximum gas yield between 86% and 93% in the temperature interval 750 °C to 950 °C when using a bed mass and a gas flow corresponding to only 6 kg/MWfuel. A comparison of the reactivity with data from TGA experiments showed that the reactivity generally was faster in the batch fluidized bed in the investigated temperature interval. A simple reactor model using kinetic data from the batch fluidized bed reactor and the TGA predicted a minimum mass of 9–24 kg/MWfuel of oxygen carrier particles for full gas yield of methane to carbon dioxide in the fuel reactor. Comparison with experiments performed in a 10 and 120 kW CLC reactor with the same type of oxygen carrier showed that even when employing 13 to 50 times the amount of oxygen carrier theoretically needed for complete gas conversion, full gas yield was not obtained in the circulating systems. Hence it is of great importance to consider the fluid dynamics and gas-solid contact when modeling the fuel reactor of a chemical-looping combustor.  相似文献   

18.
化学链燃烧铁基载氧体还原反应积炭趋势   总被引:3,自引:2,他引:1  
玄伟伟  张建胜 《化工学报》2012,63(3):904-909
利用热重分析仪对采用机械混合法自行制备的铁基载体还原过程中的积炭现象进行了实验研究。根据实验获得的热重曲线对铁基载氧体的CH4还原特性进行了分析,实验结果表明,CH4与铁基载氧体的还原反应过程中存在较为严重的积炭影响,且气体的浓度对反应有较大的影响。通过检测载氧体氧化过程中生成的CO2量对这种影响进行了定量分析,结果表明积炭随着循环次数的增多而略有下降。XRD和SEM分析结果显示还原反应生成的C部分与载体反应生成Fe3C,另一部分以碳丝的形式存在于载体表面以及颗粒之间。  相似文献   

19.
Rahul D. Solunke 《Fuel》2011,90(2):608-617
Chemical looping combustion (CLC) is an emerging technology for clean combustion. We have previously demonstrated that the embedding of metal nanoparticles into a nanostructured ceramic matrix can result in unusually active and sinter-resistant nanocomposite oxygen carrier materials for CLC which maintain high reactivity and high-temperature stability even when sulfur contaminated fuels are used in CLC. Here, we propose a novel process scheme for in situ desulfurization of syngas with simultaneous CO2-capture in chemical looping combustion by using these robust nanocomposite oxygen carriers simultaneously as sulfur-capture materials. We found that a nanocomposite Cu-BHA carrier can indeed strongly reduce the H2S concentration in the fuel reactor effluent. However, during the process the support matrix is also sulfidized and takes part in the redox process of CLC. This results in SO2 production during the reduction of the oxygen carrier and thus limits the degree of desulfurization attainable with this kind of carrier. Nevertheless, the results suggest that simultaneous desulfurization and CO2 capture in CLC is feasible with Cu as oxygen carrier as long as appropriate carrier support materials are chosen, and could result in a novel, strongly intensified process for low-emission, high efficiency combustion of sulfur contaminated fuel streams.  相似文献   

20.
A particle reaction model including mass and heat transfer has been developed to know the temperature variations produced inside the oxygen carrier particles during the cyclic reduction and oxidation reactions taking place in a chemical-looping combustion (CLC) system. The reactions of the different oxygen carriers based on Cu, Co, Fe, Mn, and Ni during the reduction with fuel gas (CH4, CO, and H2) and oxidation (O2) have been considered. In these systems, the oxidation reaction is always exothermic with subsequent heat release; however, the reduction reaction can be exothermic or endothermic depending on the metal oxide and the fuel gas. The heat generated inside the oxygen carriers during the exothermic reactions increases the particle temperature, and could affect the particle structure if the temperature increase is near to the melting point of the active materials. Several variables that affect the reaction rate and the heat transport process have been analyzed to know their effect on the internal particle temperature. For a given oxygen carrier and reaction, the maximum temperature of the particles depended mainly on the particle size, the reaction rate, and the external heat transfer resistance, being lower than the effect of the oxygen carrier porosity, type of inert material, and metal oxide content. The highest temperature variations were reached for the oxidation reactions, with the maximum corresponding to the Ni and Co oxygen carriers with values of for particles. The highest temperature increase observed during the reduction reactions corresponded to the reaction of CuO with CO, with values of for particles. For the rest of the reactions and metals, the variations in the particle temperature were below for particle sizes below . Under the typical operating conditions that exist in a CLC system, with particle sizes lower than , % of metal oxide content, and overall conversion times lower than , the increases of temperature with respect to the bulk conditions were lower than for any reaction of any oxygen carrier. Moreover, the temperature profiles inside the particles were near flat in most of the practical conditions, and no local points with high temperatures were found. Thus, changes in the solid porous structure of the carrier due to sintering during oxidation in fluidized bed reactors are not expected working at typical temperatures of CLC systems (1000-).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号