共查询到20条相似文献,搜索用时 15 毫秒
1.
The esterification of palm fatty acid distillate (PFAD), a by-product from palm oil industry, in the presence of three modified zirconia-based catalysts i.e. SO4-ZrO2, WO3-ZrO2 and TiO2-ZrO2 (with several sulfur- and tungsten-loading contents, Ti/Zr molar ratios, and calcination temperatures) was studied. It was found that, among all synthesized catalysts, the reaction in the presence of SO4-ZrO2 and WO3-ZrO2 (with 1.8%SO4 calcined at 500 °C and/or 20%WO3 calcined at 800 °C) enhances relatively high fatty acid methyl ester (FAME) yield (84.9-93.7%), which was proven to relate with the high acid site density and specific surface area as well as the formation of tetragonal phase over these catalysts. The greater benefit of WO3-ZrO2 over SO4-ZrO2 was its high stability after several reaction cycles, whereas significant deactivation was detected over SO4-ZrO2 due to the leaching of sulfur from catalyst. For further improvement, the addition of toluene as co-solvent was found to increase the FAME yield along with reduce the requirement of methanol to PFAD molar ratio (while maintains the FAME yield above 90%). Furthermore, it was observed that the presence of water in the feed considerably lower the FAME yield due to the catalyst surface interfering by water and the further hydrolysis of FAME back to fatty acids. We proposed here that the negative effect can be considerably minimized by adding molecular sieve to remove water from the feed and/or during the reaction. 相似文献
2.
Evidence of thermal decomposition of fatty acid methyl esters during the synthesis of biodiesel with supercritical methanol 总被引:1,自引:0,他引:1
Joaquín Quesada-Medina Pilar Olivares-Carrillo 《The Journal of Supercritical Fluids》2011,56(1):56-63
New evidence on the thermal decomposition of fatty acid methyl esters during biodiesel synthesis in supercritical conditions is presented. Thermal decomposition products were detected chromatographically, by applying the UNE-EN 14105:2003 standard, as a broad single peak during the determination of glycerides in the reaction samples. These degradation products could be quantified chromatographically by the above standard because the area of the peak was proportional to the disappearance of the polyunsaturated fatty acid methyl esters, which contain two or more double bonds (methyl linoleate and linolenate), generated during biodiesel synthesis from soybean oil. In the experimental conditions tested, thermal decomposition reactions of these unsaturated fatty acid methyl esters began to appear at 300 °C/26 MPa, and were more intense as the temperature rose. For its part, the main saturated fatty acid methyl ester (methyl palmitate) generated during the reaction was hardly decomposed at all in the experimental conditions tested and only began to disappear at 350 °C/43 MPa. 相似文献
3.
4.
A palm fatty acid distillate (PFAD) has been used for biodiesel production. An efficient sulfonated-glucose acid catalyst (SGAC) was prepared by sulfonation to catalyze the esterification reaction. The effect of three variables i.e. methanol-to-PFAD molar ratio, catalyst amount and reaction time, on the yield of PFAD esters was studied by the response surface methodology (RSM). The optimum reaction conditions were:12.2:1 methanol-to-PFAD molar ratio, 2.9%catalyst concentration and 134 min of time as predicted by the RSM. The reaction under the optimum conditions resulted in 94.5%of the free fatty acid (FFA) conversion with 92.4%of the FAME yield. The properties of the PFAD esters were determined according to biodiesel standards. 相似文献
5.
Ab Gapor Md Top 《Lipid Technology》2010,22(1):11-13
PFAD (palm fatty acid distillate) is a by‐product of physical refining of crude palm oil products and is composed of free fatty acids (81.7%), glycerides (14.4%), squalene (0.8%), vitamin E (0.5%), sterols (0.4%) and other substances (2.2%). PFAD is used in the animal feed and laundry soap industries as well as a raw material for the oleochemicals industry. Vitamin E, squalene and phytosterols are value‐added products which could be extracted from PFAD and are of potential value for the nutraceutical and cosmetic industries. 相似文献
6.
In the present study, the effects of operating conditions on biocatalytic activity and stability of Novozym 435 for repeated-batch biodiesel production from free fatty acid (FFA) were investigated. Thermal deactivation caused by increased operating temperature from 45 to 50 °C could seriously affect the reusability of Novozym 435. The deactivation of Novozym 435 during the esterification of oleic acid with ethanol tended to be stronger than that in the system with methanol. Under the optimal conditions, considering both biocatalytic activity and stability of the enzyme, Novozym 435 could be reused for 13 cycles for biodiesel productions from oleic acid and absolute alcohols (methanol and ethanol) with FFA conversions of at least 90%. The presence of 4%–5%water in ethanol significantly affected the reusability of Novozym 435. Changes in the surface morphology of Novozym 435 during the esterification with various conditions were observed. It was revealed that the reduc-tion in catalytic activity was related to the swel ing degree of the catalyst surface. Additionally, biodiesel produc-tion from low cost renewable feedstocks, such as palm fatty acid distillate (PFAD) and 95%ethanol was examined. The esterification of PFAD with 95%ethanol catalyzed by Novozym 435 in 10-repeated batch operation showed the similar results in FFA conversion as compared to those using oleic acid. Novozym 435 remained active and could maintain 97.6%of its initial conversion after being used for 10 batches. 相似文献
7.
Seok Won Hong Hyun Jun Cho Soo Hyun Kim Yeong Koo Yeo 《Korean Journal of Chemical Engineering》2012,29(1):18-24
Biodiesel fuel is one of the most attractive alternatives to the traditional diesel fuel derived from a petroleum refinery. Development of a reliable model for the biodiesel production process requires maximizing economics and enhancing safety in the commercial operation of biodiesel plants. We propose a model which represents effectively the non-catalytic biodiesel production reaction. In the modeling of the reaction, we employ a nonlinear programming scheme to estimate reaction kinetic parameters which minimize a specified objective function. The behavior of the methanol during the reaction is investigated both experimentally and numerically. Imperfect mixing in the liquid phase at the initial reaction stage causes a little discrepancy between the experimental data and results of simulations. Overall, the proposed model represents the biodiesel production reaction effectively. 相似文献
8.
Reduction of high content of free fatty acid in sludge palm oil via acid catalyst for biodiesel production 总被引:1,自引:0,他引:1
Adeeb HayyanMd. Zahangir Alam Mohamed E.S. MirghaniNassereldeen A. Kabbashi Noor Irma Nazashida Mohd HakimiYosri Mohd Siran Shawaluddin Tahiruddin 《Fuel Processing Technology》2011,92(5):920-924
In this study, sulphuric acid (H2SO4) was used in the pretreatment of sludge palm oil for biodiesel production by an esterification process, followed by the basic catalyzed transesterification process. The purpose of the pretreatment process was to reduce the free fatty acids (FFA) content from high content FFA (> 23%) of sludge palm oil (SPO) to a minimum level for biodiesel production (> 2%). An acid catalyzed esterification process was carried out to evaluate the low content of FFA in the treated SPO with the effects of other parameters such as molar ratio of methanol to SPO (6:1-14:1), temperature (40-80 °C), reaction time (30-120 min) and stirrer speed (200-800 rpm). The results showed that the FFA of SPO was reduced from 23.2% to less than 2% FFA using 0.75% wt/wt of sulphuric acid with the molar ratio of methanol to oil of 8:1 for 60 min reaction time at 60 °C. The results on the transesterification with esterified SPO showed that the yield (ester) of biodiesel was 83.72% with the process conditions of molar ratio of methanol to SPO 10:1, reaction temperature 60 °C, reaction time 60 min, stirrer speed 400 rpm and KOH 1% (wt/wt). The biodiesel produced from the SPO was favorable as compared to the EN 14214 and ASTM D 6751 standard. 相似文献
9.
Biodiesel Synthesis from Palm Fatty Acid Distillate Using Tungstophosphoric Acid Supported on Cesium-Containing Niobia 下载免费PDF全文
Chanasuk Surasit Boonyawan Yoosuk Manat Pohmakotr Jonggol Tantirungrotechai 《Journal of the American Oil Chemists' Society》2017,94(3):465-474
Tungstophosphoric acid supported on cesium-containing niobia (TPA/Cs x /Nb2O5, x = 1.0–2.5) catalysts were prepared by a two-step impregnation method, and their physico-chemical properties were investigated. The initial studies on the esterification of oleic acid with methanol revealed that TPA/Cs ratio affected the acidity as well as the activity of the catalysts. Among the catalysts tested, TPA/Cs1.0/Nb2O5 exhibited the best performance. In addition, the efficiency of TPA/Cs1.0/Nb2O5 for biodiesel synthesis from palm fatty acid distillate (PFAD), a by-product from palm oil industry, was demonstrated, and the reaction parameters were also evaluated. Over 90% yield of FAME was achieved, and the properties of the biodiesel obtained from PFAD met the standard requirements for biodiesel fuel. However, deactivation of the catalysts was observed, possibly due to structural transformation or organic residues blocking the active sites. 相似文献
10.
The use of supercritical alcohols has been proposed as a non-catalytical method to produce biodiesel, overcoming some of the shortcomings related to conventional catalytic methods.In this work, the Cubic-Plus-Association equation of state is used to predict the vapor-liquid equilibria of several alcohol + fatty acid ester and alcohol + glycerol systems, in the temperature range 493-573 K and pressure range 2-12 MPa. The resulting predictions reproduce accurately the experimental data, within their experimental uncertainty.The ability to predict these phase equilibria is of primary importance for designing, operating and optimizing biodiesel production at near or supercritical conditions. The CPA EoS is shown to be a powerful prediction tool for an adequate design of the operations involved in the biodiesel production with near or supercritical alcohols. 相似文献
11.
To determine the molecular diffusion coefficients of C18 unsaturated fatty acid methyl esters in supercritical carbon dioxide (scCO2) containing 10 mol% ethanol as a modifier, four methyl esters of C18 fatty acids, i.e., methyl oleate, methyl ricinoleate, methyl linoleate and methyl linolenate were selected as the typical solutes. The diffusion coefficients were measured at temperatures from 313.15 to 333.15 K and pressures from 15 to 27 MPa using the Taylor–Aris chromatographic peak broadening (CPB) technique. The influences of temperature, pressure, density and viscosity of the solvent mixture on the diffusion coefficients were examined. The results show that methyl oleate always diffuses faster than methyl ricinoleate at the same operating condition. Moreover, the D12 values in ethanol-modified scCO2 decrease with the increase of the number of C-C double bonds in C18-methyl ester, which is consistent with the trend reported in pure scCO2. The diffusivity data are compared with the estimation of eleven predictive models. The modified Wilke–Chang equation is the best purely predictive model and the free volume model of Dymond with two adjustable parameter gives the least errors with average absolute deviations lower than 2.5%. 相似文献
12.
Hydrogenation of fatty acid methyl esters to fatty alcohols at supercritical conditions 总被引:2,自引:0,他引:2
Sander van den Hark Magnus Härröd Poul Møller 《Journal of the American Oil Chemists' Society》1999,76(11):1363-1370
Extremely rapid hydrogenation of fatty acid methyl esters (FAME) to fatty alcohols (FOH) occurs when the reaction is conducted in a substantially homogeneous supercritical phase, using propane as a solvent, over a solid catalyst. At these conditions, the limitations of hydrogen transport are eliminated. At temperatures above 240°C, complete conversion of the starting material was reached at residence times of 2 to 3 s, which is several orders of magnitude shorter than reported in the literature. Furthermore, formation of by-products, i.e., hydrocarbons, could be prevented by choosing the right process settings. Hydrogen concentration turned out to be the key parameter for achieving the above two goals. As a result of the supercritical conditions, we could control the hydrogen concentration at the catalyst surface independently of the other process parameters. When methylated rapeseed oil was used as a substrate, the hydrogenation catalyst was deactivated rapidly. However, by using methylated sunflower oil, a catalyst life similar to that obtained in industrial processes was achieved. Our results showed that the hydrogenation of FAME to FOH at supercritical conditions is a much more efficient method than any other published process. 相似文献
13.
Esterification of free fatty acids in waste cooking oils (WCO): Role of ion-exchange resins 总被引:2,自引:0,他引:2
Although WCO plays a crucial role for the economical production of biodiesel, free fatty acid (FFA) level in the nature of WCO cause saponification problems during transesterification. Acidic ion-exchange resins can be used to decrease WCO free fatty acid level. In this study, activities of resins (Amberlyst-15 (A-15), Amberlyst-35 (A-35), Amberlyst-16 (A-16) and Dowex HCR-W2) in direct FFA esterification were examined in the temperature range of 50–60 °C and the effect of catalyst amount (1–2 wt%) on FFA conversion was also analyzed. FFA conversion increased with increasing reaction temperature and catalyst amount. Order of catalytic activities was found as A-15 > A-35 > A-16 > Dowex HCR-W2. This was related to the size of average pore diameters and magnitude of BET surface area. 相似文献
14.
Helen L. Ngo Heather Vanselous Gary D. Strahan Michael Haas 《Journal of the American Oil Chemists' Society》2013,90(4):563-570
Diphenylamine sulfate (DPAS) and diphenylamine hydrochloride (DPACl) salts were found to be highly active catalysts for esterification and substantial transesterification of inexpensive greases to fatty acid methyl esters (FAME). In the presence of catalytic amounts of DPAS or DPACl and excess methanol, the free fatty acids as well as the acylglycerols in waste greases were converted to FAME at 125 °C within 1 h. Although the DPAS and DPACl catalysts were found to have similar catalytic activities to their parent liquid acids (i.e., sulfuric and hydrochloric acids) the diphenylammonium salts are much easier to work with than concentrated liquid acids. 相似文献
15.
Kinetics of hydrolysis and methyl esterification for biodiesel production in two-step supercritical methanol process 总被引:8,自引:0,他引:8
For high-quality biodiesel fuel production from oils/fats, the catalyst-free two-step supercritical methanol process has been developed in a previous work, which consists of hydrolysis of triglycerides to fatty acids in subcritical water and subsequent methyl esterification of fatty acids to their methyl esters in supercritical methanol. In this paper, therefore, kinetics in hydrolysis and subsequent methyl esterification was studied to elucidate reaction mechanism. As a result, fatty acid was found to act as acid catalyst, and simple mathematical models were proposed in which regression curves can fit well with experimental results. Fatty acid was, thus, concluded to play an important role in the two-step supercritical methanol process. 相似文献
16.
Sulfonated Beet Pulp as Solid Catalyst in One-Step Esterification of Industrial Palm Fatty Acid Distillate 下载免费PDF全文
Farahnaz Eghbali Babadi Soraya Hosseini Salman Masoudi Soltani Mohamed Kheireddine Aroua Ahmad Shamiri Mahtab Samadi 《Journal of the American Oil Chemists' Society》2016,93(3):319-327
In this research a new heterogeneous catalyst has been prepared for biodiesel production. The catalyst was prepared by sulfonating industrial sugar waste. Unlike homogeneous catalysts, which require further purification and separation from the biodiesel production reaction media, this inexpensive synthetic catalyst does not need to go through an additional separation process. This advantage consequently minimizes the total application costs. The catalyst was prepared by partially carbonizing sugar beet pulp at 400 °C. The carbonization product was then sulfonated with concentrated H2SO4 vapor in order to produce a solid catalyst. The prepared catalyst was used in the esterification reaction between palm fatty acid distillate (PFAD) and methanol. The effects of the temperature, methanol/PFAD ratio, reaction time and catalyst dosage on the efficiency of the production were individually investigated. The optimum biodiesel production occurred at 85 °C, a reaction time of 300 min, catalyst dosage of 3 g and methanol/PFAD ratio of 5:1 (mol/mol), lowering the acid value from 198 to 13.1 (mg KOH/g oil) or the equivalent, with a fatty acid methyl ester yield of around 92 %. The results suggest that the synthesized inexpensive catalyst is useful for biodiesel production from PFAD. 相似文献
17.
18.
Svein A. Mjs Sonnich Meier Otto Grahl‐Nielsen 《European Journal of Lipid Science and Technology》2006,108(4):315-322
Acid‐catalysed methylation is frequently applied for the preparation of fatty acid methyl esters used for gas chromatographic analysis of fatty acids. A series of artefacts were observed in hydrochloric acid‐catalysed direct methylation of herring (Clupea harengus L.) muscle. The artefacts were identified as trans isomers of eicosapentaenoic and docosahexaenoic acid, and their levels increased with reaction time. The isomers were not found after methylation of a lipid extract of the herring muscle, even after extreme reaction times. In general, the trans isomers are only observed after methylation of certain marine tissues, indicating catalytic activity in these samples. Based on these results, it is recommended that direct methylation procedures are thoroughly validated with each matrix type analysed, and that reaction times should not be longer than necessary to complete the methylation. 相似文献
19.
A new process for catalyst-free production of biodiesel using supercritical methyl acetate 总被引:1,自引:0,他引:1
Production of glycerol is unavoidable in the conventional processes for biodiesel fuel (BDF) production. In this research, therefore, we investigated conversion of rapeseed oil to fatty acid methyl esters (FAME) and triacetin (TA) by processing of supercritical methyl acetate. As a result, it was discovered that the trans-esterification reaction of triglycerides with methyl acetate can proceed without catalyst under supercritical conditions, generating FAME and triacetin. In order to study the effect of the triacetin addition to FAME, its effect was investigated on various fuel characteristics. It was, consequently, discovered that there were no adverse effects on the main fuel characteristics when the molar ratio of methyl oleate to triacetin was 3:1, corresponding to the theoretically derived mole ratio from the trans-esterification reaction of rapeseed oil with methyl acetate. Moreover, the addition of triacetin to methyl oleate improved the pour point and triacetin has high oxidation stability. Therefore, by defining BDF as a mixture of methyl oleate with triacetin, we can obtain an improved yield of 105% of BDF by the supercritical methyl acetate, in excess of the yield of the conventional process. 相似文献
20.
Kinematic viscosity of biodiesel components (fatty acid alkyl esters) and related compounds at low temperatures 总被引:1,自引:0,他引:1
Biodiesel, defined as the mono-alkyl esters of vegetable oils and animal fats is, has undergone rapid development and acceptance as an alternative diesel fuel. Kinematic viscosity is one of the fuel properties specified in biodiesel standards, with 40 °C being the temperature at which this property is to be determined and ranges of acceptable kinematic viscosity given. While data on kinematic viscosity of biodiesel and related materials at higher temperatures are available in the literature, this work reports on the kinematic viscosity of biodiesel and a variety of fatty acid alkyl esters at temperatures from 40 °C down to −10 °C in increments of 5 °C using the appropriately modified standard reference method ASTM D445. Investigating the low-temperature properties of biodiesel, including viscosity, of biodiesel and its components is important because of the problems associated with the use of biodiesel under these conditions. Such data may aid in developing biodiesel fuels optimized for fatty ester composition. An index termed here the low-temperature viscosity ratio (LTVR) using data at 0 °C and 40 °C (divide viscosity value at 0 °C by viscosity value at 40 °C) was used to evaluate individual compounds but also mixtures by their low-temperature viscosity behavior. Compounds tested included a variety of saturated, monounsaturated, diunsaturated and triunsaturated fatty esters, methyl ricinoleate, in which the OH group leads to a significant increase in viscosity as well as triolein, as well as some fatty alcohols and alkanes. Esters of oleic acid have the highest viscosity of all biodiesel components that are liquids at low temperatures. The behavior of blends of biodiesel and some fatty esters with a low-sulfur diesel fuel was also investigated. 相似文献