首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
In fluidised bed combustion heterogeneous reactions catalysed by the bed material, CaO, and char are significant for the emission levels for instance of NO, N2O, and CO. The catalysts present in the bed affect significantly the selectivity of HCN and NH3 oxidation, which are known as precursors of NOx (i.e. NO and NO2) and N2O emissions from solid fuel combustion. Thus the catalytic activity of biomass ashes may also be responsible for the negligible N2O emissions from biomass combustion due to the presence of a large amount of solids in fluidised bed combustion, homogeneous oxidation may be suppressed within the bed by the quenching of the radicals. For this reason the catalytic oxidation of hydrocarbons and CO on the bed material may be of significance for the total burnout within the fluidised bed combustor.Within this study the effect of different ashes from spruce wood, peat, and for comparison bituminous coal on the oxidation of CH4, CO, and HCN was studied. The different ashes were shown to have a strong catalytic activity for the oxidation of CH4, CO, and HCN. In HCN oxidation the selectivity towards NO is high, whereas very little N2O is formed. The activity of the ashes is strongly dependent on the fuel, which may be explained by their composition.The kinetics of the oxidation of CO and HCN in the temperature range relevant for fluidised bed combustion, i.e. 800-900 °C, has been evaluated for spruce wood ash.  相似文献   

2.
Coal combustion under the elevated partial pressure of oxygen in a circulating fluidized bed environment was investigated. The fuel used was bituminous coal. The concentration of oxygen in the air was increased to 35% per volume. Excess oxygen ranged from 1.1 to 1.3 and the temperature ranged from ca. 1073 K to 1273 K. A 0.1 MWth CFB combustor was adapted for oxy-combustion. The conversion ratios respectively studied were: carbon, sulfur and nitrogen to CO, SO2 and NOX. An increase of nitrogen and sulfur conversion ratios and a strong decrease of incomplete combustion losses were found under the oxygen-enriched conditions. Moreover, a strong increase in temperature was noticed during oxy-combustion.  相似文献   

3.
Experiments are performed in an entrained flow reactor to better understand the kinetic processes involved in biomass pyrolysis under high temperatures (1073-1273 K) and fast heating condition (>500 K s−1). The influence of the particle size (0.4 and 1.1 mm), of the temperature (1073-1273 K), of the presence of steam in the gas atmosphere (0 and 20 vol%) and of the residence time (between 0.7 and 3.5 s for gas) on conversion and selectivity is studied. Under these conditions, the particle size is the most crucial parameter that influences decomposition. For 1.1 mm particles, pyrolysis requires more than 0.5 s and heat transfer processes are limiting. For 0.4 mm particles, pyrolysis seems to be finished before 0.5 s. More than 70 wt% of gas is produced. Forty percent of the initial carbon is found in CO; less than 5% is found in CO2. The hydrogen content is almost equally distributed among H2, H2O and light hydrocarbons (CH4, C2H2, C2H4). Under these conditions, the evolution of the produced gas mixture is not very significant during the first few seconds, even if there seems to be some reactions between H2, the C2 and tars.  相似文献   

4.
Sulfation of inorganic chlorides (KCl, CaCl2 and NaCl) of mean particles size 75-125 μm was done in a lab-scale tubular reactor. The reactor was supplied with a mixed gas consisting of SO2:0.3-1.3 vol%, O2:2.5-15 vol% and H2O:5-20 vol% in the temperature range 623-1123 K. The rates of HCl emission from the particles samples were measured and compared.It was found that at 1023 K, an HCl of about 8000 ppm was emitted from CaCl2 and this emission concentration was more than 3 times as high as those from NaCl and KCl. The reaction kinetic parameters such as rate constants and reaction orders with respect to SO2, O2 and H2O partial pressures were determined for the sulfation of NaCl, KCl and CaCl2. The rate of HCl emission from KCl, CaCl2 and NaCl became increasingly high when the temperature was raised above 923 K and depend on SO2, O2, and H2O partial pressures. It was considered that an increase in the rate of HCl emission from the inorganic chlorides at temperatures above 923 K was caused by a change in the reaction mode from a gas-solid to a gas-liquid and/or a gas phase reaction, owing to a partial melting and/or volatilization of the inorganic chlorides.  相似文献   

5.
Jacob Brix 《Fuel》2011,90(6):2224-2239
The aim of this investigation has been to model combustion under suspension fired conditions in O2/N2 and O2/CO2 mixtures. Experiments used for model validation have been carried out in an electrically heated Entrained Flow Reactor (EFR) at temperatures between 1173 K and 1673 K with inlet O2 concentrations between 5 and 28 vol.%. The COal COmbustion MOdel, COCOMO, includes the three char morphologies: cenospheric char, network char and dense char each divided between six discrete particle sizes. Both combustion and gasification with CO2 are accounted for and reaction rates include thermal char deactivation, which was found to be important for combustion at high reactor temperatures and high O2 concentrations. COCOMO show in general good agreement with experimental char conversion profiles at conditions covering zone I-III. From the experimental profiles no effect of CO2 gasification on char conversion has been found. COCOMO does however suggest that CO2 gasification in oxy-fuel combustion at low O2 concentrations can account for as much as 70% of the overall char consumption rate during combustion in zone III.  相似文献   

6.
X0.5Sr0.5Co0.8Fe0.2O3−δ (X = Ba, La and Sm) and La0.75Sr0.25Cr0.5X0.5O3−δ (X′ = Mn, Fe and Al) mixed ionic-electronic conducting perovskite-based oxides have been tested as SOFC electrode materials on La0.9Sr0.1Ga0.8Mg0.2O2.85 (LSGM) electrolytes under different atmospheres (air, oxygen, argon and dry and wet 5% H2/Ar) and the area-specific resistances (ASR) were compared. Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCoF) possesses the lowest ASR values in air (0.04 Ω cm2 at 1073 K) whilst La0.75Sr0.25Cr0.5Mn0.5O3−δ (LSCrM) possesses the lowest ASR values in wet 5% H2/Ar (0.28 Ω cm2 at 1073 K). In addition, fuel cell tests were carried out using wet 5% H2/Ar as fuel and air as oxidant. The maximum power density (∼123 mW cm−2) at 1073 K was reached with the electrolyte-supported system BSCoF/LSGM/LSCrM (∼1.5 mm electrolyte thickness). Furthermore, LSCrX′ materials were used simultaneously as cathode and anode in fuel cell tests and the symmetric system LSCrM/LSGM/LSCrM (∼1.5 mm electrolyte thickness) reached a maximum power density of ∼54 mW cm−2 at 1073 K.  相似文献   

7.
Philippe Dagaut  Franck Lecomte 《Fuel》2003,82(9):1033-1040
The reduction of nitric oxide (NO) by a mixture of methane, ethylene and acetylene with and without addition of SO2 has been studied in a fused silica jet-stirred reactor operating at 1 atm in simulated conditions of the reburning zone. The temperatures were ranging from 800 to 1400 K. In these experiments, the initial mole fractions of NO and SO2 were 0 or 1000 ppm, that of methane, ethylene and acetylene were, respectively, 2400, 1200 and 600 ppm. The equivalence ratio has been varied from 0.5 to 2.5. It was demonstrated that the reduction of NO varies as the temperature and that for a given temperature, a maximum NO reduction occurs slightly above stoichiometric conditions. The addition of SO2 inhibited the process of reduction of NO under the present conditions. The present results generally follow those obtained in previous studies involving simple hydrocarbons or natural gas as reburn fuel. A detailed chemical kinetic modeling of the present experiments was performed using an updated and improved kinetic scheme (1006 reversible reactions and 145 species). An overall reasonable agreement between the present data and the modeling was obtained. Also, the proposed kinetic mechanism can be successfully used to model the reduction of NO by ethane, ethylene, a natural gas blend (methane-ethane 10:1). The kinetic modeling indicates that the reduction of NO proceeds via the following sequence of reactions: HCCO+NO=HCNO+CO; HCCO+NO=HCN+CO2; HCN+O=NCO+H; HCN+O=NH+CO; HCN+H=CN+H2; HCNO+H=HCN+OH; CN+O2=NCO+O; NCO+H=NH+CO; NCO+NO=N2O+CO; NCO+NO=CO2+N2; NH+NO=N2O+H; NH+NO=N2+OH. The inhibition of this process by SO2 is explained by the sequence of reactions H+SO2+M=HOSO+M and HOSO+H=SO2+H2 that acts as a termination process: H+H+M=H2+M.  相似文献   

8.
The transformation of sulphate minerals during pyrolysis of an Australian lignite has been studied using pure sulphates (CaSO4, FeSO4 and Fe2(SO4)3), a high mineral (HM) lignite sample and a low mineral (LM) lignite sample collected from different locations of the same deposit, and samples of acid-washed LM doped with sulphates (CaSO4+ LM and FeSO4+ LM), respectively. Thermogravimetric analysis and fixed-bed reactor techniques were used for the pyrolysis experimentation and the lignite samples and their chars were analysed using FTIR and XRD. The TGA experiments showed that CaSO4 decomposes between 1400 and 1700 K in nitrogen and a 50/50 N2/CO2 mixture, while in air CaSO4 decomposes between 1500 and 1700 K. Using a TGA-MS it was found that only a small fraction of CaSO4 in CaSO4+ LM decomposed at 653 K, releasing SO2. CaSO4 was still observed in the char recovered at 1073 K as confirmed by the FTIR and XRD analysis. FeSO4·7H2O released the bound water below 543 K and the remaining FeSO4 decomposed between 813 and 953 K. FeSO4 in FeSO4+ LM decomposed at 500 K to release SO2. The inherent sulphates in HM were dominated by iron sulphates which started to decompose and release SO2 at around 500 K and all sulphate had been decomposed at 1073 K. It was observed that during the fixed-bed pyrolysis at 1073 K in nitrogen, approximately 36% of the total sulphur in the CaSO4+ LM decomposed, 88% of the total sulphur in the FeSO4+ LM decomposed and around 76% of the total sulphur in HM decomposed. It was also confirmed that FeSO4+ LM produced more volatile sulphur than CaSO4+ LM during pyrolysis.  相似文献   

9.
Study on combustion mechanism of asphalt binder by using TG-FTIR technique   总被引:1,自引:0,他引:1  
Tao Xu  Xiaoming Huang 《Fuel》2010,89(9):2185-2190
The combustion mechanism of asphalt binder was investigated by using thermogravimetric analyzer coupled with Fourier transform infrared spectrometer (TG-FTIR) in a mixed gas environment of 21% oxygen and 79% nitrogen. The results show that the combustion process of asphalt binder consists of three main consecutive stages at a low heating rate. The combustion reaction becomes more and more intense from the 1st to 3rd stage. The release of volatiles occurs mainly at 300-570 °C, and the gaseous products in each stage are different. The main products in the 1st stage are CO2, CO, H2O, hydrocarbons, formaldehyde, tetrahydrofuran, formic acid, aromatic compounds, etc. In the next stage, the combustion products mentioned above keep on increasing, but some new volatiles such as alcohols, phenols, styrene, etc. are present. In the last stage, the CH and CO bonds continue to fracture and aromatization reaction occurs, and the release amount of CO2, CO, and H2O reaches the maximum. But the content of other products decreases or even disappears due to burning. Among the above volatiles, CO2 is the dominant gaseous product in the whole combustion process. The concentration of CO2 and CO keeps increasing, and reaches the maximum intensity at about 520 °C. The evolution of H2O, CH4, and formic acid exhibits the trend of increase first, and then decrease. Over 570 °C, there are few products released at the end of the combustion process. Asphalt binder combustion process includes two modes of complete and incomplete combustion, and the latter may be main combustion mode of asphalt binder.  相似文献   

10.
Coal chars employed in the previous studies were usually prepared from coal pyrolysis at high temperatures and then cooled down to the room temperature. As these chars were burned out, they had undergone an additional process: cooling and reheating. The influence of this process on the conversion from char-N to nitrogen oxides had mostly been neglected. In this paper, the influence of cooling and reheating during coal pyrolysis on the conversion from char-N to NO and N2O is studied on a drop tube/fixed bed reactor. Results indicate that the process of cooling and reheating can cause a fall of NO emission during the coal char combustion. The discrepancy between the experiments with and without cooling and reheating at low temperatures is greater than that at high temperatures. For a high rank coal sample, the difference can be up to 20% in the temperature range of 973–1073 K. In addition, the discrepant nitrogen, which would have been converted into NO in the experiments without cooling and reheating, does not retain in the char during the char combustion. Most of this nitrogen is oxidized into N2O through the reduction of NO.  相似文献   

11.
In miniaturization of burners, it is very difficult to organize stable self-sustained combustion. A mini-scale porous media combustor with heat recuperation was set up to study the stability of lean combustion and its emission. The diameter of the porous media was only 20 mm and the burner was about 140 mm in length. Experimental results showed that when the mass flow rate of the premixed gas was 0.163 g/s, the extinction limit was extended to Φ = 0.40 in the methane combustion and Φ = 0.39 in the propane combustion. For most cases, the emission of CO was lower than 100 ppm in both methane and propane combustion. The maximal concentration of NOx was 63 ppm in the methane combustion. The ultra-lean combustion was also predicted by a numerical simulation with a 2D two-temperature model. The heat recuperation efficiency η, as high as 40%, made the ultra-lean combustion extremely stable. Although the maximal flame temperature in the porous media reached above 2000 K, the exhausts temperature was lower than 900 K.  相似文献   

12.
The interaction of graphite with plasmas of pure gases (O2, N2 or H2O), air or mixtures of gases containing NO has been studied by XPS “in situ” analysis. Depending on the type of plasma, different species of nitrogen, oxygen and carbon have been detected on the surface of graphite. The nitrogen containing species have been attributed to pyridinic, pyrrol, quartenary and oxidized groups adsorbed on the surface. The evolution with the treatment time of the relative intensity of the different nitrogen bands for Ar + NO, N2 + NO, air or N2 plasmas has served to propose a model accounting for the reactions of graphite with plasmas of NO containing gases. The model explains why carbon materials (in the form of graphite, soot particles, etc.) can be very effective for the removal of the NO present in exhaust combustion gases excited by a plasma. The analysis of the C1s and O1s photoemission peaks reveals the formation of C/O adsorbed species up to a maximum concentration on the surface of around 10% atomic oxygen. A general evolution is the progressive formation of C/O species where the carbon is sp3 hybridized. This tendency is enhanced when graphite is treated with the plasma of water.  相似文献   

13.
The mechanism of binding HCl from incineration of organic wastewater containing chloral (C2H3Cl3O2) by CaO in a bench-scale bubbling fluidized bed at 773-1073 K was investigated using data from energy-dispersive X-ray (EDX) and scanning electron microscopy (SEM). The EDX analysis showed that the binding capacity of CaO reached a maximum in the range of 773-873 K. The SEM analysis indicated that the formation of the product layer included nucleation and crystal growth of solid products, followed by densification and fracture. At higher temperatures the product layer was more porous than that formed at lower temperatures (773 K). It has been shown that at higher temperatures, the reaction between CaO and HCl is controlled at first by chemical reaction, and then by a combination of chemical reaction and product layer diffusion. The variation of the structure of the solid product layer with temperature and reaction time, and the change of the rate-limiting step for the reaction can be very well explained by free energy-work analysis.  相似文献   

14.
Atmospheric Bubbling Fluidised Bed Combustion (ABFBC) of a bituminous coal and anthracite with particle diameters in the range 500-4000 μm was investigated in a pilot-plant facility (circular section with 0.25 m internal diameter and 3 m height). The experiments were conducted at steady-state conditions using three excess air levels (10, 25 and 50%) and bed temperatures in the 750-900 °C range. Combustion air was staged, with primary air accounting for 100, 80 and 60% of total combustion air. The effect of limestone addition was also tested.Large CO concentrations were observed inside the bed, up to 8 and 6% (v/v) in the cases of anthracite and bituminous coals, respectively. These concentrations decreased sharply as the gases emerged from the bed, and the CO flue gas concentration observed was in general less than 2000 and 4000 ppm, respectively. The CO flue gas concentration increased with air staging and with limestone addition, but decreased with either excess air or temperature increase. The observed results confirm the influence of sand particles (and probably of SO2) in the ‘quenching’ of the oxygenated free radicals (HO and HO2) reactions responsible for the CO oxidation inside the bed.  相似文献   

15.
A thermodynamic equilibrium analysis on the multi-reaction system for carbon dioxide reforming of methane in view of carbon formation was performed with Aspen plus based on direct minimization of Gibbs free energy method. The effects of CO2/CH4 ratio (0.5-3), reaction temperature (573-1473 K) and pressure (1-25 atm) on equilibrium conversions, product compositions and solid carbon were studied. Numerical analysis revealed that the optimal working conditions for syngas production in Fischer-Tropsch synthesis were at temperatures higher than 1173 K for CO2/CH4 ratio being 1 at which about 4 mol of syngas (H2/CO = 1) could be produced from 2 mol of reactants with negligible amount of carbon formation. Although temperatures above 973 K had suppressed the carbon formation, the moles of water formed increased especially at higher CO2/CH4 ratios (being 2 and 3). The increment could be attributed to RWGS reaction attested by the enhanced number of CO moles, declined H2 moles and gradual increment of CO2 conversion. The simulated reactant conversions and product distribution were compared with experimental results in the literatures to study the differences between the real behavior and thermodynamic equilibrium profile of CO2 reforming of methane. The potential of producing decent yields of ethylene, ethane, methanol and dimethyl ether seemed to depend on active and selective catalysts. Higher pressures suppressed the effect of temperature on reactant conversion, augmented carbon deposition and decreased CO and H2 production due to methane decomposition and CO disproportionation reactions. Analysis of oxidative CO2 reforming of methane with equal amount of CH4 and CO2 revealed reactant conversions and syngas yields above 90% corresponded to the optimal operating temperature and feed ratio of 1073 K and CO2:CH4:O2 = 1:1:0.1, respectively. The H2/CO ratio was maintained at unity while water formation was minimized and solid carbon eliminated.  相似文献   

16.
This paper intends to investigate combustion of petrodiesel and biodiesels of grape seed, corn, sunflower, soybean, olive and rice bran oils, which were produced through an alkali-based transesterification, in a non-pressurized, water-cooled combustion chamber by determining its combustion performance and gas emissions (CO, CO2, NOx, SO2). First, the influence of fuel pressure which related to the rate of sprayed fuel to the chamber was studied in order to find out an optimum combustion pressure. In the next level, the influence of A/F upon emissions and boiler performances at 13.79 bars was studied. Results show that similar combustion of fuels occurred at 13.79 bars (optimum) where due to the increase in fuel pressure, the effect of viscous forces in flame formation disappeared. Complete combustion of fuels occurred at 19.305 bars where the CO emissions of all the fuels reached to zero.The overall performance of the boiler obtained with the methyl esters and petrodiesel are comparable for the defined operating points (especially at high energy rates and low A/F). All the six kinds of vegetable based methyl ester emitted lower emissions than petrodiesel over the wide fuel pressures, and A/F. Meanwhile, biodiesels emitted higher amounts of NOx than petrodiesel. Biodiesels also emitted higher amounts of CO than petrodiesel at low fuel pressures when the viscous forces interfered with proper distributions of fuels to the combustion chamber.  相似文献   

17.
Fuel Cell performance was measured at 792-1095 K for Ni-GDC (Gd-doped ceria) anode-supported GDC film (60 μm thickness) with a (La0.8Sr0.2)(Co0.8Fe0.2)O3 cathode using H2 fuel containing 3 vol% H2O. A maximum power density, 436 mW/cm2, was obtained at 1095 K. The electrical conductivity of GDC electrolyte in N2 atmosphere of 10−15-100 Pa oxygen partial pressures (Po2) at 773-1073 K was independent of Po2, which indicated the diffusion of oxide ions. The conductivity of GDC in H2O/H2 atmosphere increased because of the further formation of electrons due to the dissociation of hydrogen in GDC (H2 → 2H+ + 2e). The hole conductivity was observed at 873 K in Po2 = 100-104 Pa. The key factors in increasing power density are the increase of open circuit voltage and the suppression of H2 fuel dissolution in GDC electrolyte. These are controlled by the cathode material and Gd-dopant composition.  相似文献   

18.
Jean-Philippe Laviolette 《Fuel》2011,90(9):2850-2857
The non-premixed combustion of C1-C4n-alkanes with air was investigated inside a bubbling fluidized bed of inert sand particles at intermediate temperatures: 923 K ? TB ? 1123 K. For ethane, propane and n-butane, combustion occurred mainly in the freeboard region at bed temperatures below T1 = 923 K. On the other hand, complete conversion occurred within 0.2 m of the injector at: T2 = 1073 K. For methane, the measured values of T1 and T2 were significantly higher at 1023 K and above 1123 K, respectively. The fluidized bed combustion was accurately modeled with first-order global kinetics and one PFR model to represent the main fluidized bed body. The measured global reaction rates for C2-C4n-alkanes were characterized by a uniform Arrhenius expression, while the global reaction rate for methane was significantly slower. Reactions in the injector region either led to significant conversion in that zone or an autoignition delay inside the main fluidized bed body. The conversion in the injector region increased with rising fluidized bed temperature and decreased with increasing jet velocity. To account for the promoting and inhibiting effects, an analogy was made with the concept of induction time: the PFR length (bi) of the injector region was correlated to the fluidized bed temperature and jet velocity using an Arrhenius expression. These results show that the conversion of C2-C4n-alkanes can be estimated with one set of critical bed temperatures and modeled with one Arrhenius kinetics expression.  相似文献   

19.
The application of ADN for an effective oxidizer of propellants and explosives requires a detailed knowledge of the burning behaviour. The physical and chemical mechanisms of the combustion depend on pressure. Especially profiles of temperature and species in the flame are important to design propellant formulation of high performance and low signature of the rocket plume. In the presented study, pure ADN and ADN/paraffin mixtures were investigated as strands in an optical bomb at pressures of 0.5 MPa to 10 MPa. The application of non-intrusive combustion diagnostics for the investigation of fast burning energetic materials allowed the measurement of burning rates and profiles of temperature and gas components at various distances above the burning propellant surface. The burning rate was determined by using a video system and a special frame analysis. The acquisition and analysis of emission spectra in the UV/VIS allowed the investigation of rotational temperatures, the determination of particle temperatures and the identification of transient flame radicals. The vibrational temperatures of final combustion products resulted from band spectra emitted in the near and mid infrared spectral range. Burning rates of 5 mm/s to 70 mm/s were recorded showing a mesa/plateau-effect in the pressure range of 4 MPa to 7 MPa. The UV/VIS spectra indicated an emission from OH, NH and CN radicals. The strong emission of OH bands of the ADN/paraffin mixture allowed the investigation of rotational temperatures with a mean value of 2700 K which is closely below the adiabatic flame temperature of 2950 K. Additionally, one-dimensional intensity profiles of the flame radicals were measured. As combustion end products H2O, CO, CO2 and NO were found. NO could only be detected at a distance up to 2 mm above the propellant surface. The measured CO/CO2 fraction was higher as 10/1. Water could only be detected far above the propellant surface.  相似文献   

20.
S. Som 《Fuel》2008,87(3):319-334
Synthesis gas or “Syngas” is being recognized as a viable energy source worldwide, particularly for stationary power generation due to its wide availability as a product of bio and fossil fuel gasification. There are, however, gaps in the fundamental understanding of syngas combustion and emissions characteristics, especially at elevated pressures that are relevant to practical combustors. This paper presents a numerical and experimental investigation of the combustion and NOx characteristics of syngas fuel with varying composition, pressure and strain rate. Experiments were performed at atmospheric conditions, while the simulations considered different pressures. Both experiments and simulations indicate that stable non-premixed and partially premixed counterflow flames (PPFs) can be established for a wide range of syngas compositions and strain rates. Three chemical kinetic models, GRI 3.0, Davis et al., and Mueller et al. are examined. The Davis et al. mechanism is found to agree best with the experimental data, and hence used to simulate the PPF structure at different pressure and fuel composition. For the pressure range investigated, results indicate a typical double flame structure with a rich premixed reaction zone (RPZ) on the fuel side and a non-premixed reaction zone (NPZ) on the oxidizer side, with RPZ characterized by H2 oxidation, and NPZ by both H2 and CO oxidation. While thermal NO is found to be the dominant route for NO production, a reburn route, which consumes NO through NO + O + M→ NO2 + M and H + NO + M → HNO + M reactions, becomes increasingly important at high pressures. The amount of NO formed in syngas PPFs first increases rapidly with pressure, but then levels off at higher pressures. At a given pressure, the peak NO mole fraction exhibits a non-monotonic variation with syngas composition, first decreasing to a minimum value, and then increasing as the amount of CO in syngas is increased. This implies the existence of an optimum syngas composition that yields the lowest amount of NO production in syngas PPFs, and can be attributed to the combined effects of thermal and reburn mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号